DOI QR코드

DOI QR Code

A numerical study on the optimum spacing of disc cutters considering rock strength and penetration depth using discrete element method

암반강도 및 압입깊이에 따른 디스크커터의 최적간격 산정을 위한 개별요소법 기반 수치해석 연구

  • Lee, Sang Yun (Dept. of Civil Engineering, Inha University) ;
  • Song, Ki-il (Dept. of Civil Engineering, Inha University) ;
  • Jung, Ju Hwan (Next Generation Transmission & Substation Lab., KEPCO Research Institute)
  • 이상연 (인하대학교 토목공학과) ;
  • 송기일 (인하대학교 토목공학과) ;
  • 정주환 (한국전력 전력연구원 차세대송변전연구실)
  • Received : 2020.05.27
  • Accepted : 2020.06.24
  • Published : 2020.07.31

Abstract

Optimizing the spacing of the disc cutter is a key element in the design of the TBM cutter head, which determines the drilling performance of the TBM. The full-scale linear cutting test is known as the most reliable and accurate test for calculating the spacing of the disc cutter, but it has the disadvantage of costly and time-consuming for the full-scale experiment. In this study, through the numerical analysis study based on the discrete element method, the tendency between Specific Energy-S/P ratio according to uniaxial compression strength and penetration depth of rock was analyzed, and the optimum spacing of 17-inch disc cutter was derived. To examine the appropriateness of the numerical analysis model, the rolling force acting on the disc cutter was compared and reviewed with the CSM model. As a result of numerical analysis for the linear cutting test, the rolling force acting on the disc cutter was analyzed to be similar to the rolling force derived from the theoretical formula of the CSM model. From the numerical analysis on 5 UCS cases (50 MPa, 70 MPa, 100 MPa, 150 MPa, 200 MPa), it is found that the range of the optimum spacing of the disc cutter decreases as the rock strength increases. And it can be concluded that 80~100 mm of disc cutter spacing is the optimum range having minimum specific energy regardless of rock strength. This tends to coincide with the optimal spacing of previously reported disk cutters, which underpins the disk cutter spacing calculated through this study.

디스크커터의 간격을 최적화하는 것은 TBM 커터헤드의 설계의 핵심요소로, TBM의 굴진성능을 좌우한다. 실대형 선형절삭시험은 디스크커터의 간격 산정을 위해 가장 신뢰성 및 정확도가 높은 시험으로 알려져 있으나 실대형 실험을 위해 경제적 및 시간적 비용이 소요되는 단점이 있다. 본 연구에서는 개별요소법 기반의 수치해석 연구를 통해 암반의 일축압축강도 및 압입깊이에 따른 비에너지-S/P비 간의 경향성을 분석하였고, 17인치 디스크커터의 최적 간격을 도출하였다. 수치해석모델의 적정성을 검토하기 위하여 디스크커터에 작용되는 회전력을 CSM 모델과 비교·검토하였다. 선형절삭시험에 대한 수치해석 결과, 디스크커터에 작용되는 회전력은 CSM 모델의 이론식으로부터 도출한 회전력과 유사한 것으로 분석되었다. 5가지(50 MPa, 70 MPa, 100 MPa, 150 MPa, 200 MPa)의 일축압축강도에 대한 수치해석 결과, 암반강도가 증가할수록 디스크커터의 최적간격의 범위는 감소하는 경향을 보였으며 80~100 mm범위에서 최소 비에너지를 보이는 것으로 확인되었다. 이는, 기존에 보고된 디스크커터의 최적 간격과 일치되는 경향으로써, 본 연구를 통해 산정된 디스크커터 간격을 밑받침한다.

Keywords

References

  1. Acaroglu, O., Ozdemir, L., Asbury, B. (2008), "A fuzzy logic model to predict specific energy requirement for TBM performance prediction", Tunnelling and Underground Space Technology, Vol. 23, No. 5, pp. 600-608. https://doi.org/10.1016/j.tust.2007.11.003
  2. Bakar, M.Z.A., Gertsch, L.S., Rostami, J. (2014), "Evaluation of fragments from disc cutting of dry and saturated sandstone", Rock Mechanics and Rock Engineering, Vol. 47, No. 5, pp. 1891-1903. https://doi.org/10.1007/s00603-013-0482-8
  3. Chang, S.H., Choi, S.W., Bae, G.J., Jeon, S.W. (2007), "A parametric study of rock properties and mechanical cutting conditions for deriving an optimum design model of a TBM cutterhead equipped with disc cutters", Journal of The Korean Society of Civil Engineers, Vol. 27, No. 1C, pp. 87-98.
  4. Cho, J.W., Jeon, S., Yu, S.H., Chang, S.H. (2010), "Optimum spacing of TBM disc cutters: A numerical simulation using the three-dimensional dynamic fracturing method", Tunnelling and Underground Space Technology, Vol. 25, No. 3, pp. 230-244. https://doi.org/10.1016/j.tust.2009.11.007
  5. Choi, S.O., Lee, S.J. (2015), "Three-dimensional numerical analysis of the rock-cutting behavior of a disc cutter using particle flow code", KSCE Journal of Civil Engineering, Vol. 19, No. 4, pp. 1129-1138. https://doi.org/10.1007/s12205-013-0622-4
  6. Gertsch, R., Gertsch, L., Rostami, J. (2007), "Disc cutting tests in Colorado Red Granite: Implications for TBM performance prediction", International Journal of Rock Mechanics and Mining Sciences, Vol. 44, No. 2, pp. 238-246. https://doi.org/10.1016/j.ijrmms.2006.07.007
  7. Itasca Consulting Group (2019), PFC3D (particle flow code in 3 dimensions) manual.
  8. Labra, C., Rojek, J., Onate, E. (2017), "Discrete/finite element modelling of rock cutting with a TBM disc cutter", Rock Mechanics and Rock Engineering, Vol. 50, No. 3, pp. 621-638. https://doi.org/10.1007/s00603-016-1133-7
  9. Medel-Morales, R.C., Botello-Rionda, S. (2013), "Design and optimization of tunnel boring machines by simulating the cutting rock process using the discrete element method", Revista Computacion y Sistemas, Vol. 17, No. 3, pp. 329 -339.
  10. Ministry of Land, Infrastructure and Transport (2015), Development of optimized TBM cutterhead design method and high-performance disc cutter, pp. 88-123.
  11. Nilsen, B., Ozdemir, L. (1993). "Hard rock tunnel boring prediction and field performance", Proceedings of the Rapid Excavation and Tunneling Conference (RETC), Boston, pp. 833-852.
  12. Potyondy, D.O., Cundall, P.A. (2004), "A bonded-particle model for rock", International Journal of Rock Mechanics and Mining Sciences, Vol. 41, No. 8, pp. 1329-1364. https://doi.org/10.1016/j.ijrmms.2004.09.011
  13. Rostami, J., Ozdemir, L. (1993), "A new model for performance prediction of hard rock TBMs", Proceedings of the Rapid Excavation and Tunneling Conference (RETC), Boston, pp. 793-809.
  14. Rostami, J., Ozdemir, L., Nilson, B. (1996), "Comparison between CSM and NTH hard rock TBM performance prediction models", Proceedings of the Annual Technical Meeting of the Institute of Shaft Drilling Technology, Las Vegas, pp. 1-10.
  15. Sanio, H.P. (1985), "Prediction of the performance of disc cutters in anisotropic rock", International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 22, No. 3, pp. 153-161. https://doi.org/10.1016/0148-9062(85)93229-2
  16. Shin, J.H. (2015), Geomechanics & Engineering-Analysis and Design, CIR Co. Inc., Seoul, pp. 580-608.