• Title/Summary/Keyword: Drag estimation

Search Result 84, Processing Time 0.031 seconds

Extended Kalman Filter Based Relative State Estimation for Satellites in Formation Flying (확장형 칼만 필터를 이용한 인공위성 편대비행 상대 상태 추정)

  • Lee, Young-Gu;Bang, Hyo-Choong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.10
    • /
    • pp.962-969
    • /
    • 2007
  • In this paper, an approach is developed for relative state estimation of satellite formation flying. To estimate relative states of two satellites, the Extended Kalman Filter Algorithm is adopted with the relative distance and speed between two satellites and attitude of satellite for measurements. Numerical simulations are conducted under two circumstances. The first one presents both chief and deputy satellites are orbiting a circular reference orbit around a perfectly spherical Earth model with no disturbing acceleration, in which the elementary relative orbital motion is taken into account. In reality, however, the Earth is not a perfect sphere, but rather an oblate spheroid, and both satellites are under the effect of $J_2$ geopotential disturbance, which causes the relative distance between two satellites to be on the gradual increase. A near-Earth orbit decays as a result of atmospheric drag. In order to remove the modeling error, the second scenario incorporates the effect of the $J_2$ geopotential force, and the atmospheric drag, and the eccentricity in satellite orbit are also considered.

Estimation technique for artificial satellite orbit determination (인공위성 궤도결정을 위한 추정기법)

  • 박수홍;최철환;조겸래
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.425-430
    • /
    • 1991
  • For satellite orbit determination, a satellite (K-3H) which is affected by the earth's gravitational field and the earth's atmospheric drag, the sun, and the moon is chosen as a dynamic model. The state vector include orbit parameters, uncertain parameters associated with perturbations and tracking stations. These perturbations include gravitational constant, atmospheric drag, and jonal harmonics due to the earth nonsphericity. Early orbit was obtained with given the predicted orbital parameter of the satellite. And orbit determination, which is applied to Extended Kalman Filter(EKF) for real time implementation , use the observation data which is given by satellite tracking radar system and then orbit estimation is accomplished. As a result, extended sequential estimation algorithm has a fast convergence and also indicate effectiveness for real time operation.

  • PDF

A Study on Vehicle Drag Coefficients in Domestic Road Tunnels (국내 도로터널내 차량항력계수 관련 연구)

  • Lee, Chang-Woo;Lee, Kyeong-Bok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.4
    • /
    • pp.313-321
    • /
    • 2005
  • Drag coefficient is one of the critical design factors to quantify the piston effect in vehicle tunnels. Several problems are raised on the drag coefficient currently applied for the ventilation system design; unverified adoption of the projected frontal area of the vehicle from the foreign study in the past, and lack of consideration for the slip-streaming effect. This study aims at better estimation of the traffic-induced ventilation force in the local tunnels. Values for the projected frontal area of the vehicles running on the local roads at present are proposed and results of an extensive CFD study are studied on the slip-streaming effects in various traffic conditions to quantify $K_{blockage}$ and the drag coefficient in the domestic tunnels.

  • PDF

Velocity Loss Due to Atmospheric Drag and Orbit Lifetime Estimation (항력에 의한 속도 손실 및 궤도 수명 예측)

  • Park, Chang-Su;Jo, Sang-Beom;No, Ung-Rae
    • Aerospace Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.205-212
    • /
    • 2006
  • Atmospheric drag is the most significant factor effecting the low Earth satellites under the altitude of 800 km Although the atmospheric density of the low Earth orbit is very low compared to that of the sea level, the accumulated effect of the atmospheric drag slowly lowers the satellite velocity at the perigee. Decrease in velocity at perigee directly causes decrease in altitude at apogee which changes the eccentricity of the orbit. The orbit finally reaches a circular orbit before reentering the Earth. This paper states the methods of calculating the atmospheric drag and the lifetime of the satellite. The lifetime of the kick motor and the satellites which will be used on KSLV-L are calculated by Satellite Tool Kit.

  • PDF

CFD estimation of HDCs for varying bodies of revolution of underwater gliders

  • R.V. Shashank Shankar;R. Vijayakumar
    • Ocean Systems Engineering
    • /
    • v.13 no.3
    • /
    • pp.269-286
    • /
    • 2023
  • Autonomous Underwater Gliders (AUGs) are a type of Underwater Vehicles that move without the help of a standard propeller. Gliders use buoyancy engines to vary their weight or buoyancy and traverse with the help of the Lift and Drag forces developed from the fuselage and the wings. The Lift and Drag Coefficients, also called Hydrodynamic coefficients (HDCs) play a major role in glider dynamics. This paper examines the effect of the different types of glider fuselages based on the bodies of revolution (BOR) of NACA sections. The HDCs of the glider fuselages are numerically estimated at a low-speed regime (105 Reynolds Number) using Computational Fluid Dynamics (CFD). The methodology is validated using published literature, and the results of CFD are discussed for possible application in the estimation of glider turning motion.

Evaluating Method of Solitary Wave-Induced Tsunami Force Acting on an Onshore Bridge in Coastal Area (연안역의 육상 교량에 작용하는 고립파에 의한 지진해일파력의 평가법)

  • Kim, Do-Sam;Kyung, Kab-Soo;Lee, Yoon-Doo;Woo, Kyung Hwan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.2
    • /
    • pp.149-159
    • /
    • 2016
  • In this study, the solitary wave-induced tsunami force acting on an onshore bridges in coastal area was numerically modelled by means of TWOPM-3D based on Navier-Stokes solver and VOF method which can track free surface effectively. The validity of numerical analysis was verified by comparing the experimental tsunami bore force acting on vertical wall and column structure. In particular, the characteristics of tsunami force with the changing tsunami intensity were surveyed through numerical experiments. The availability of 3-dimensional numerical analysis was reviewed through the comparison between the existing numerical results and design criteria for each drag force coefficient by applying Morison equation considering only drag force. As reasonable and high-precision estimation method of tsunami force, it was suggested to apply the estimation method taking drag and inertial force into consideration at the same time.

Fuel Consumption Estimation for Atmospheric Drag Using LEO Perturbation Analysis (섭동해석을 이용한 저궤도 위성의 대기저항 보정용 연료 소모량 예측)

  • Jung, Do-Hee;Song, Yong-Kyu
    • Journal of Advanced Navigation Technology
    • /
    • v.3 no.2
    • /
    • pp.147-155
    • /
    • 1999
  • In this work variations of orbital parameters are derived from the perturbation equations under Earth oblateness and atmospheric drag. A simple and effective scheme is proposed to compute the required delta v and fuel consumption to compensate for atmospheric drag. The scheme is applied to KOMPSAT example.

  • PDF

The Estimation of Fuel Consumption of Satellites and Orbit Analysis under Orbit Perturbations (궤도섭동을 고려한 저궤도 위성의 추진제 소모량 예측 및 궤도 해석)

  • 정도희;이상기
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.65-70
    • /
    • 2003
  • In this work variations of orbital parameters are first derived from the perturbation equations using difference equation method under Earth oblateness and atmospheric drag. A simple and effective scheme is proposed to compute the required delta v and fuel consumption to compensate for atmospheric drag. The scheme is applied to KOMPSAT example. And by means of numerical simulations we quantitatively analyze influences due to each perturbation source, i.e., nonspherical Earth, atmospheric drag, third body gravities (Sun, Moon), and solar radiation.

  • PDF

Estimation of Wind Pressure on Soundproof Tunnel and Noise Reduction at Far-field (방음터널의 풍하중 산정 및 감음성능 예측)

  • 임정빈;김영찬;김두훈;조재영;이학은
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.542-547
    • /
    • 2004
  • The objective of this study is 0 estimate wind pressure acting on soundproof tunnel and noise reduction through the tunnel. For the purpose various shape of scale models were prepared and drag forces acting on each models were measured in wind tunnel. And numerical simulation was performed to confirm experimental results. As a result the lowest drag force coefficient of 0.59 was obtained in the case of arch roof shape model. Noise reduction through soundproof tunnel was simulated by using ray tracing method according to various open ratio of its roof area.

  • PDF

Estimation of Static Load Applied on Steam Generator Tubes (증기발생기 전열관에 작용되는 정적 하중 평가)

  • Park, Bumjin;Park, Jai Hak;Cho, Young Ki
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.7 no.1
    • /
    • pp.35-40
    • /
    • 2011
  • If a plugged tube in a steam generator is broken, it may damage nearby intact tubes. To prevent this damage, it is recommended that a stabilizer is installed into the plugged tube. However, the installation cost of a stabilizer is very high. So studies are required to determine the conditions on which the installation is necessary. For this purpose static loads and dynamic loads applied on a tube should be known to estimate the residual strength and remaining fatigue and wear life of a plugged tube. Two-dimensional and three-dimensional computational fluid dynamics (CFD) analyses are performed to obtain the drag coefficient for cross flow to a tube. Using the obtained drag coefficient, the static load can be estimated and the residual strength of a plugged tube can be calculated. An inclined flow problem is also analyzed and the vertical and horizontal forces are obtained and discussed.