DOI QR코드

DOI QR Code

Evaluating Method of Solitary Wave-Induced Tsunami Force Acting on an Onshore Bridge in Coastal Area

연안역의 육상 교량에 작용하는 고립파에 의한 지진해일파력의 평가법

  • Kim, Do-Sam (Department of Civil Engineering, Korea Maritime and Ocean Univ.) ;
  • Kyung, Kab-Soo (Department of Civil Engineering, Korea Maritime and Ocean Univ.) ;
  • Lee, Yoon-Doo (Department of Civil and Environmental Engineering, Korea Maritime and Ocean Univ.) ;
  • Woo, Kyung Hwan (Department of Civil and Environmental Engineering, Korea Maritime and Ocean Univ.)
  • 김도삼 (한국해양대학교 건설공학과) ;
  • 경갑수 (한국해양대학교 건설공학과) ;
  • 이윤두 (한국해양대학교 토목환경공학과) ;
  • 우경환 (한국해양대학교 토목환경공학과)
  • Received : 2015.10.26
  • Accepted : 2015.12.22
  • Published : 2016.04.29

Abstract

In this study, the solitary wave-induced tsunami force acting on an onshore bridges in coastal area was numerically modelled by means of TWOPM-3D based on Navier-Stokes solver and VOF method which can track free surface effectively. The validity of numerical analysis was verified by comparing the experimental tsunami bore force acting on vertical wall and column structure. In particular, the characteristics of tsunami force with the changing tsunami intensity were surveyed through numerical experiments. The availability of 3-dimensional numerical analysis was reviewed through the comparison between the existing numerical results and design criteria for each drag force coefficient by applying Morison equation considering only drag force. As reasonable and high-precision estimation method of tsunami force, it was suggested to apply the estimation method taking drag and inertial force into consideration at the same time.

본 연구에서는 Navier-Stokes solver에 기초한 TWOPM-3D와 자유수면을 효과적으로 추적할 수 있는 VOF법을 결합한 수치해석법으로 연안역의 육상 교량에 작용하는 고립파에 의한 지진해일파력을 수치적으로 검토하였으며, 연직벽체와 연직주상구조물에 작용하는 단파파력에 관한 기존의 실험치와 비교 검토하여 본 수치해석의 타당성을 검증하였다. 실제로 피해를 입은 교량에 대해 지진해일파고의 변화에 따른 파력의 특성을 수치실험을 통하여 조사하였으며, 육상 교량에 작용하는 지진해일파력의 추정에 항력 성분만을 고려한 Morison식으로부터 얻어진 항력계수의 결과와 설계기준과의 비교로부터 본 3차원 수치해석의 유용성을 논의하였다. 또한, 지진해일파력을 보다 고정도로 추정할 수 있는 합리적인 방법으로 항력과 관성력을 동시에 고려한 Morison식의 적용을 제안하였다.

Keywords

References

  1. Amsden, A.A., Harlow, F.H. (1970) The SMAC Method : A Numerical Technique for Calculating Incompressible Fluid Flow. Los Alamos Scientific Laboratory Report LA-4370, Los Alamos, N.M.
  2. Araki, S., Ishino, K., Degochi, I. (2010a) Characteristics of Tsunami Fluid Force Acting on Girder Bridge, Proceedings of 20th International Offshore and Polar Engineering Conference, ISOPE, pp.775-779.
  3. Araki, S., Sakahita, Y., Deguchi, I. (2010b) Characteristics of Horizontal and Vertical Tsunami Force Acting on Bridge Beam, 66(1), pp.796-800.
  4. Arikawa, T., Ikebe, M., Yamada, F., Shimosako, K., Imamura, F. (2005) Large Model Test of Tsunami Force on a Revetment and on a Land Structure, Proc. Coastal Eng., JSCE, 52, pp.746-750.
  5. Arnason, H. (2005) Interactions Between an Incident Bore and a Free-Standing Coastal Structure, Doctoral Dissertation, University of Washington.
  6. Bricker, J., Nakayama, A. (2014) Contribution of Trapped Air, Deck Superelevation and Nearby Structures to Bridge Deck Failure during a Tsunami, J. Hydraul. Eng., ASCE, 140(5), 05014002. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000855
  7. FEMA-CCM (2005) Coastal construction manual. FEMA 55 Report, Edition 3, FEMA, USA.
  8. Fujii, N., Ohmori, M., Ikeya, T., Inagaki, S. (2006) Evaluation of Tsunami Wave Force Acting on Oil Storage Tanks and Predictive Method for Tsunami Damages, J. Coastal Eng.,JSCE, 53, pp.271-275. https://doi.org/10.2208/proce1989.53.271
  9. Fujima, K., Achmad, F., Shigihara, Y., Mizutani, N. (2009) Estimation of Tsunami force Acting on Rectangular Structures, J. Disaster Res., 4(6), pp.404-409. https://doi.org/10.20965/jdr.2009.p0404
  10. Hirt, C.W., Nichols, B.D. (1981) Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries, J. Comput. Phys., 287, pp.299-316.
  11. Iemura, H., Pradono, M.H., Takahashi, Y. (2005) Report on the Tsunami Damage of Bridges in Banda Aceh and Some Possible Countermeasures, Proceedings of 28th Earthquake Engineering Symposium, JSCE.
  12. Korea Society of Civil Engineering, Korea Bridge Design & Engineering Research Center (2008) Bridge Design Criteia of (Korean edition), Kimoondang, Korea, p.1008.
  13. Lee, K.H., Ha, S.W., Lee, K.S., Kim, D.S. (2011) Numerical Analysis for Three-Dimensional Tsunami Force Acting on Multi-onshore Structures, J. Korean Soc. Civil Eng., KSCE, 31(2B), pp.175-185.
  14. Matsutomi, H. (1991) An Experimental Study on Pressure and Total Force due to Bore, Proc. of Coastal Eng., JSCE, 36, pp.626-630.
  15. Nakamura, T., Mizutani, N., Ren, X. (2013) Numerical Analysis of Tsunami-Induced Wave Force acting on a Bridge Deck and its Effects on the Motion of the Bridge Deck, J. Japan Soc. Civil Eng., A1, 69(4) (Journal of Japan Association for Earthquake Engineering, 32), I 20-I 30.
  16. Shigihara, Y., Fujima, K., Kosa, K. (2010) Reevaluation of Tsunami Force acted on the Bridges of the Neighborhood of Banda Aceh in the 2004 Indian Ocean Tsunami, 66(1),pp.231-235.
  17. Shoji, G., Hiraki, Y., Fujima, K., Shigihara, Y. (2010) Experimental study on fluid force acting on a bridge deck subjected to plunging breaker bores and surging breaker bores. (in Japanese)
  18. Shoji, G., Moriyama, T. (2007) Evaluation of the Structural Fragility of a Bridge Structure Subjected to a Tsunami Wave Load, J. Nat. Disaster Sci., 29(2), pp.73-81. https://doi.org/10.2328/jnds.29.73
  19. Shoji, G., Moriyama, T., Fujima, K., Shigihara, Y., Kasahara, K. (2009) Experimental Study Associated with a Breaking Tsunami Wave Load acting onto a Single Span Bridge Deck, J. Struct. Eng., JSCE, 55A, pp.460-470.
  20. Smagorinsky, J. (1963) General Circulation Experiments with the Primitive Equations, Mon. Weath. Rev., 91(3), pp.99-164. https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
  21. Tanabe, S., Asai, M., Sonoda, Y. (2013) Numerical Evaluation of Fluid Force acted on Bridge Girders During Tsunami by using Particle Method. APCOM & ISCM.
  22. Xiao, H., Huang, W. (2008) Numerical Modeling of Wave Runup and Forces on an Idealized Beachfront House, Ocean Eng., 35, pp.106-116. https://doi.org/10.1016/j.oceaneng.2007.07.009
  23. Xu, G. (2015) Investigating Wave Forces on Coastal Bridge Deck, Ph.D thesis, Louisiana State University.
  24. Yeh, H. (2006) Maximum Fluid Forces in the Tsunami Runup Zone, J. Waterw. Port. Coastal & Ocean Eng, ASCE, 132(6), pp.496-500. https://doi.org/10.1061/(ASCE)0733-950X(2006)132:6(496)
  25. Yeh, H. (2007) Design Tsunami Forces for Onshore Structures, J. Disaster Res., 2(6), pp.1-6.
  26. Yim, S.C., Azadbakht, M. (2013) Tsunami Forces on Selected California Coastal Bridges, Final Report Submitted to the California Department of Transportation (Caltrans) under Contract No. 65A0384.

Cited by

  1. Numerical Simulation for Tsunami Force Acting on Onshore Bridge (for Solitary Wave) vol.29, pp.2, 2017, https://doi.org/10.9765/KSCOE.2017.29.2.92