• Title/Summary/Keyword: Double pulse test

Search Result 25, Processing Time 0.021 seconds

Modal Analysis of Stress Wave Test for Flaw Detection in Concrete (콘크리트의 결함평가를 위한 탄성파시험의 모우드해석)

  • 정범석;이창무;강병탁;황진호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.1261-1266
    • /
    • 2000
  • In the impact echo method, a stress pulse is introduced into an object at on accessible surface by a transmitter. The pulse propagates into the test object and is reflected by flaws or interfaces. In this paper, void and crack locations of concrete specimens were detected using impact echo method. In their modal identification procedures, the double least squares solution for Ibrahim Time Domain technique was used.

Improvement of Electroforming Process System Based on Double Hidden Layer Network (이중 비밀 다층구조 네트워크에 기반한 전기주조 공정 시스템의 개선)

  • Byung-Won Min
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.3
    • /
    • pp.61-67
    • /
    • 2023
  • In order to optimize the pulse electroforming copper process, a double hidden layer BP (Back Propagation) neural network is constructed. Through sample training, the mapping relationship between electroforming copper process conditions and target properties is accurately established, and the prediction of microhardness and tensile strength of the electroforming layer in the pulse electroforming copper process is realized. The predicted results are verified by electrodeposition copper test in copper pyrophosphate solution system with pulse power supply. The results show that the microhardness and tensile strength of copper layer predicted by "3-4-3-2" structure double hidden layer neural network are very close to the experimental values, and the relative error is less than 2.32%. In the parameter range, the microhardness of copper layer is between 100.3~205.6MPa and the tensile strength is between 112~485MPa.When the microhardness and tensile strength are optimal,the corresponding process conditions are as follows: current density is 2A-dm-2, pulse frequency is 2KHz and pulse duty cycle is 10%.

Double Pulse Raman-Laser Induced Plasma Spectroscopy System for Space Exploration (우주 탐사를 위한 이중펄스 라만-레이저 유도 플라즈마 분광 시스템 개발 연구)

  • Yang, Jun-Ho;Yoh, Jai-Ick
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.6
    • /
    • pp.479-487
    • /
    • 2020
  • A new double-pulse laser system that combines Raman and laser induced plasma spectroscopy (LIPS) in a single unit is proposed. The study attempts to enhance the laser induced plasma signals while simultaneously extracting the desired molecular signals from Raman spectroscopy. In low pressure conditions such as the lunar atmosphere, the measuring of plasma emission is hard because of the low electron density and short persistence time causing a rapid plasma expansion. Furthermore, in the integration of the detecting system aimed at space exploration, the minimization of laser system is important in terms of the payload mass. Simultaneous molecular and atomic detection that gave highly resolved spectral data at pressure below 0.07 torr is demonstrated amongst eight rock samples test. The plasma stacking produced from the double-pulse laser enhanced the signal intensity of calcium and oxygen lines in calcite matrix by twofold, compared to a conventional LIPS.

An Experimental Investigation of the G-M type Pulse Tube Refrigerator

  • Park, Seong-Je;Koh, Deuk-Yong;Yeom, Han-Kil;Hong, Yong-Ju;Kim, Hyo-Bong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.2
    • /
    • pp.40-45
    • /
    • 2004
  • The experimental results of the G-M (Gifford-McMahon) type pulse tube refrigerators are presented in this paper. The pulse tube refrigerator, which has no moving parts at its cold section, is attractive in obtaining higher reliability, simpler construction, and lower vibration than any other small refrigerators. The objectives of this study are to develop the design technology of the G-M type pulse tube refrigerator and acquire its application methods for replacing G-M cryocooler. As a preliminary test, the refrigeration performances of the basic, orifice, and double inlet pulse tube refrigerators were investigated. The lowest temperature obtained in the one-stage pulse tube refrigerator was 34.4K and the refrigeration capacity at the optimum operation condition was 23W at 80K. And the lowest temperature of the second stage cold head in the two-stage pulse tube refrigerators was 18.3K and the refrigeration capacities at optimum condition were 0.45W at 20K and 20W at 80K, respectively. Finally, the lowest temperature obtained in the three-stage pulse tube refrigerator was 29.8K and the refrigeration capacity at the optimum operation condition was 1.3W for 40K and 5W for 70K.

A Study on Development of Oscillator Measurement Device Using Double Edge Time Interval Frequency Counter (더블 에지타임 인터벌 카운터를 이용한 발진기특정 장치개발에 관한 연구)

  • Hwang, Gi-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.7
    • /
    • pp.1386-1392
    • /
    • 2009
  • In this paper, we have developed the test equipment to measure performance of oscillator using Double Side Edge Trigger(DSET). This DSET increases counting number of micro pulse by frequency counter, which will successfully reduce the half measuring time to comparison with the existing counter by using DSET. This new concept of performance measuring equipment provides a high productivity and performance improvement.

Performance improvement of 2 stage GM-type pulse tube Cryocooler for cryopump

  • Park, Seong-Je;Koh, Deuk-Yong;Suh, Jeong-Kyoon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.13 no.4
    • /
    • pp.30-35
    • /
    • 2011
  • This paper describes experimental study and performance improvement of 2 stage Gifford-McMahon (G-M) type pulse tube cryocooler for cryopump. The objective of this study is to improve the efficiency of 2 stage pulse tube cryocooler for substituting 2 stage G-M cryocooler used in cryopump. The target cooling capacities are 5 W at 20 K and 35 W at 80 K for the $1^{st}$ and the $2^{nd}$ stage, respectively. These values are good cooling capacities for vacuum level in medium size ICP 200 cryopump. Design of the 2 stage pulse tube cryocooler is conducted by FZKPTR(Forschungs Zentrum Karlsruhe Pulse Tube Refrigerator) program. In order to improve the performance of 2 stage pulse tube cryocooler, U-type pulse tube cryocooler is fabricated and connecting tubes are minimized for reducing dead volumes and pressure losses. Also, to get larger capacities, orifice valves and double inlet valves are optimized and the compressor of 6 kW is used. On the latest unit, the lowest temperatures of 2 stage pulse tube cryocooler are 42 K ($1^{st}$ stage) and 8.3 K ($2^{nd}$ stage) and the cooling capacities are 40 W at 82.9 K ($1^{st}$ stage) and 10 W at 20.5 K ($2^{nd}$ stage) with 6.0 kW of compressor input power. This pulse tube cryocooler is suited for commercial medium size cryopump. In performance test of cryopump with 2 stage pulse tube cryocooler, pumping speed for gaseous nitrogen is 4,300 L/s and the ultimate vacuum pressure is $7.5{\times}10^{-10}$ mbar.

Quantitative Nondestructive Evaluation of Bonded Joints utilizing Pulse-Echo Ultrasonic Test (펄스-에코법을 이용한 접착접합 시험편의 정량적 비파괴 평가)

  • Oh, Seung-Kyu;Hwang, Young-Taek;Lee, Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.3
    • /
    • pp.157-164
    • /
    • 2003
  • The pulse-echo method is one of the most widely used ultrasonic techniques for application of nondestructive evaluation. Particularly, quantitative nondestructive evaluation of defects has been considered more important to assure the reliability and the safety of structure. Frequency energy in adhesive joints is based on the ultrasonic wave analysis. The attenuation coefficient upon wave amplitude and the frequency energy that is expressed in the term of wave pressure amplitude were utilized for the primary wave experiment. By means of a control experiment, it was confirmed that the variation of the frequency energy in adhesive joints depends on transition by stress variation. In this paper, the ultrasonic characteristics were measured for single lap joint and Double Cantilever Beam specimen with different fracture modes that was subjected to stress. Consequently, the data that was obtained from the adhesive specimen was analytically compared to the fracture mechanics parameter

High-precision Rogowski coil circuit design for SiC MOSFET short circuit detection (SiC MOSFET 단락 검출 회로를 위한 고정밀 Rogowski 코일 회로 설계)

  • Lee, Ju-A;Sim, Dong Hyeon;Son, Won-Jin;Ann, Sangjoon;Byun, Jongeun;Lee, Byoung Kuk
    • Proceedings of the KIPE Conference
    • /
    • 2020.08a
    • /
    • pp.196-198
    • /
    • 2020
  • 본 논문은 SiC MOSFET의 단락 검출을 위한 고정밀 Rogowski 코일 회로 설계 방법을 제안한다. 설계 방법을 제안하기 위해 먼저 Rogowski 코일의 기본 구성인 적분기를 실제 시스템 요구 사양에 맞추어 설계한다. 설계한 회로의 성능 확인을 위하여 DPT (double pulse test)를 실시하며, test 결과 분석을 통해 문제점을 파악하고 전류 센싱 정밀도 향상을 위해 입출력 필터 설계 및 Rogowski 코일 턴 수를 변경한다. 변경한 각 조건들에 대하여 DPT를 진행하고 각 test 결과를 기반으로 Rogowski 코일 회로 설계 방안을 제안한다.

  • PDF

Calculation of the Magnetic Field Homogeneity in the Induction coil for the Magnetic Field Immunity Test (자기장 내성평가용 유도코일의 자기장 균일도 계산)

  • 유권상;김창석
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.5 no.4
    • /
    • pp.64-70
    • /
    • 1994
  • the magnetic field homogeneities of the induction coils of various sizes and shapes were investigated in order to prepare for the magnetic field immunity test under the power frequency, the pulse and the damed oscillatory fields recommended by the IEC. For this purpose, we analyzed the magnetic field homogeneities in the two induction coils with $1m\times1m$, and $1m\times2.6m$, , and the double square coils with 0.8m and 0.6m spaced. The testing volume within $\pm$3dB in the double square coil with 0.8m spaced in twice bigger than single square coil with 1m side in the z-direction.

  • PDF

Characteristics of Rh- Pd- Pt Three-Way Catalysts with Double-Layer Washcoat on the Hydrothermal Aging (이중층 워시코트 Rh-Pd-Pt 삼원촉매의 열적 열하에 따른 반응 특성)

  • Choi Byungchul;Jeong Jongwoo;Son Geonseog;Jung Myunggun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.8-16
    • /
    • 2006
  • The research was conducted to characterize of Rh-Pd-Pt TWC with a double-layer washcoat for gasoline vehicle. The physical characteristics on surface of catalyst were inspected by BET, SEM and TEM. The characteristics of catalytic reaction were examined by the TPD/TPR and CO-pulse chemisorption. The catalyst $6Hx(0.35\times11\times3)$ showed superior conversion performance after hydrothermal aging process, which was due to small difference of the surface area between. the fresh and the aged catalyst. The CO-chemisorption and surface area were superior in the 600 cpsi catalyst than other catalysts, this catalyst also shown the higher conversion efficiency of the exhaust emissions. From the TPR test, the conversion performance of the aged catalyst was decreased by the agglomeration and sintering of the PM and metal oxides. From the TPD result, it was found that the NO chemisorption was happed on the bottom-layer washcoat with Pd, and the NO chemisorption was re-happened on the upper-layer washcoat with Pt and Rh in the desorption process.