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Abstract  In order to optimize the pulse electroforming copper process, a double hidden layer BP (Back 
Propagation) neural network is constructed. Through sample training, the mapping relationship between
electroforming copper process conditions and target properties is accurately established, and the 
prediction of microhardness and tensile strength of the electroforming layer in the pulse electroforming
copper process is realized. The predicted results are verified by electrodeposition copper test in copper
pyrophosphate solution system with pulse power supply. The results show that the microhardness and
tensile strength of copper layer predicted by "3-4-3-2" structure double hidden layer neural network are 
very close to the experimental values, and the relative error is less than 2.32%. In the parameter range,
the microhardness of copper layer is between 100.3~205.6MPa and the tensile strength is between 
112~485MPa.When the microhardness and tensile strength are optimal,the corresponding process 
conditions are as follows: current density is 2A-dm-2, pulse frequency is 2KHz and pulse duty cycle is
10%. 
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요  약  구리의 전기주조 공정을 최적화하기 위하여 이중 비밀 다층구조의 역전파 뉴럴 네트워크가 구성된다. 샘플 학습
을 통하여, 구리 전기주조 공정 조건과 목표 특성 간의 함수관계가 정확히 성취되고, 구리 전기주조 공정 내에서 다층구
조의 미세강도와 장력에 대한 예측이 이루어진다. 예측된 결과는 펄스 전원공급기를 장착한 구리 피로인산염 솔루션 
시스템 내에서 구리의 전해석출 시험에 의하여 증명된다. 그 결과는 다음과 같이 나타난다. “3-4-3-2” 구조의 이중
비밀 다층구조 뉴럴 네트워크에 의하여 예측된 구리 다층구조의 미세강도와 장력은 실험값에 매우 근접하며 그 상대적 
오차는 2.32%보다 작다. 주어진 파라미터의 범위 내에서, 구리의 미세강도는 100.3~205.6MPa이며, 장력은 
112~485MPa 정도로 측정된다. 미세강도와 장력이 최적인 조건에서 그에 대응하는 공정 조건은 다음과 같다: 전류밀
도는 2A·dm-2, 펄스 주파수는 2KHz, 펄스의 듀티싸이클은 10%이다. 

주제어 : 이중 비밀 다층구조, 역전파 뉴럴 네트워크, 전기주조, 최적화, 구리 공정
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1. INTRODUCTION 

In electroforming process, the method of 
deposited layer forming is special, which is used 
to prepare metal parts with special shape or 
molds with high precision requirements [1-3]. 
Electroforming process relies on the electrons 
from metal ions stacked on the cathode surface 
one by one, and its theoretical accuracy can 
reach the ion level. It is widely used in the 
preparation of micro structural parts with small 
and complex structure on the surface. Traditional 
electroforming technology has problems such as 
uneven distribution of electric field intensity, 
hydrogen evolution and difficult mass transfer at 
the microstructure of parts. The electroforming 
layer is prone to quality defects such as pinholes, 
pits and cavities, and the deposition thickness is 
uneven, which can not completely copy the 
whole microstructure, affecting the forming 
quality of microstructure parts [4,5]. When the 
complex structure is copied by DC power 
electroforming, the nodulation is easy to occur 
on the surface and edge of the electroforming 
layer. At the same time, the grain size and 
surface roughness of the deposited layer appear, 
and the performance index of the electroforming 
layer can not meet the actual demand. Through 
a large number of experimental studies, many 
researchers found that Electroforming with pulse 
power supply is an important means to improve 
the quality of deposited layer [6-8]. 

In pulse electroforming, the electrode process 
changes from DC process to periodic pulse 
process. The pulse power supply affects the 
electrode process, thus affecting the physical 
properties and quality of the deposited layer. 
Pulse electroforming can supplement the 
concentration of metal ions in the diffusion 
layer, significantly reduce the concentration 
polarization and produce higher electrochemical 
polarization, so as to refine the grain and 
improve the density of the deposited layer; The 

thickness of the diffusion layer is reduced due to 
the intermittent formation around the diffusion 
layer; Increasing the cathode limiting current 
density, the metal crystal morphology and growth 
mode during electroforming are closely related to 
the cathodic polarization overpotential. 
Increasing the overpotential can make the grain 
finer and the deposited layer compact. In pulse 
electroforming, the uniformity of the deposited 
layer is affected by the distribution of current 
density and the transmission of electrolyte 
components. Intermittent energization can buffer 
the ion concentration on the cathode surface, 
greatly reduce the difference in the thickness of 
the deposited layer caused by the uneven 
transmission of electrolyte components, and 
improve the uniformity of the deposited layer.

Yuan Xuetao obtained the grain size of 
deposits with fine appearance can only be 
refined down to about 100 nm by changing the 
pulse parameters[9]. Fafeng Xia used the pulse 
electrodeposition (PED) technique, which showed 
that the contents of AlN nanoparticles increased 
with density of pulse current and on-duty ratio 
of pulse current increasing[10]. S.A. Lajevardi 
investigated the effects of pulse electrodeposition 
parameters on the properties of nickel–titania 
composite coatings electrodeposited from a 
nickel Watts type bath[11-14]. 

In the current electroforming research process, 
a large number of experiments need to be 
carried out to obtain the relationship between 
electrodeposition process parameters and 
coating properties, which greatly affects the 
efficiency of product development in experiment 
and industrial production, and therefore 
consumes a lot of manpower and time cost. 
Artificial neural network has good self-learning 
function and can efficiently find the optimal 
parameters of electroforming process. It is widely 
used in the fields of intelligent machining, signal 
processing and optimal combination[15].

In this paper, the optimal parameters of pulse 
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electroforming copper process is studied. The 
mapping relationship between the input parameters 
and the output parameters of microhardness and 
tensile strength is established by using double 
hidden layer back propagation neural network. 
Through model training, the linear inseparable 
problem under the electroforming copper processing 
model is solved by using the multi-dimensional 
function mapping ability and self-learning ability 
of multi-layer perceptron. Finally, the process 
parameters of the optimal performance of 
electroformed copper are predicted[16].

2. ELECTROFORMING PROCESS 
SYSTEM

2.1 Copper Electroforming Method
The self-developed electroforming copper system 

is shown in the [Fig. 1], including electroforming 
liquid circulation system, electroforming liquid 
temperature control system, fixture system and 
power supply system. The anode plate is made of 
phosphor copper.The cathode shape is a metal 
tube with a diameter of 6mm and a length of 
50mm, section of which is as shown in [Fig. 1]. 
The rest cathode immersed in the solution shall 
be insulated.The distance between anode and 
cathode was fixed with 40mm.
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[Fig. 1] Schematic diagram of electroforming system

2.2 Double Hidden Layer BP Network Model
In this paper, the microhardness and tensile 

strength in copper electroforming process are 
trained and predicted based on BP neural 
network.Only increasing the number of nodes of 
single hidden layer can not improve the 
prediction ability of neural network for copper 
electroforming process parameters. In this paper, 
a method of adding a second hidden layer is 
proposed, which uses the multi-dimensional 
function mapping ability and self-learning ability 
of multi-layer perceptron. When dealing with the 
linear inseparable problem under the 
electroforming copper processing model, the 
double hidden layer BP neural network is 
superior.

BP neural network has the characteristics of 
signal forward calculation and error back 
propagation. The multilayer feedforward network 
composed of input layer, hidden layer and 
output layer is gradually optimized by back 
propagation algorithm, and the weight of each 
perceptron is continuously adjusted according to 
the minimum loss function until the training goal 
is reached. 

In the network model of copper electroforming 
process parameter optimization, three parameters 
that most affect the results of copper electroforming 
are selected as inputs d, f and γ correspond to 
the nodes of the input layer respectively. The 
three components have different physical 
meanings with small correlation, which can be 
detected and extracted. Microhardness Hv and 
tensile strength Rm are selected as the output 
items of BP network. The double hidden layer 
network constructed in this paper is shown in 
[Fig. 2]. In BP network, the first hidden layer has 
4 nodes and the second hidden layer has 3 
nodes. 
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[Fig. 2] Double hidden layer network structure

3. EXAMPLE RESULTS AND ANALYSIS

3.1 Sample pretreatment 
Firstly, the samples are reduced. At the beginning 

of the processing of electroformed copper 
processing test samples, 137 samples similar to 
the expected experiment are selected, normalized 
with sigmoid function, and the data of different 
dimensions are changed to [0,1] or [-1,1] as the 
input samples. <Table 1> shows some samples. 
Normalization can avoid the saturation of neuron 
output caused by too large continuous value and 
slow down the convergence speed. In this paper, 
it is transformed by equation (1).
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x* is the normalized sample, x is the original 
value, xmin and xmax are the minimum and 
maximum values respectively. In the forward 
propagation learning of the signal in the 
network, the difference between the output 
signal and the teacher signal was compared, the 
error signals of the output layer and the double 
hidden layer were inversely calculated according 
to the error value, and the corresponding weights 
were adjusted layer by layer.

3.2 Analysis of network model experiment 
   results

Due to the lack of nonlinear mapping ability 

of single hidden layer network in electroforming 
copper process optimization, increasing the 
number of nodes of single hidden layer can not 
improve the performance of the network. In this 
paper, adding hidden layer can improve the 
mapping ability of the artificial network to the 
parameters such as current density d, pulse 
frequency f, pulse duty cycle γ, microhardness Hv 
and tensile strength Rm. The node design in the 
double hidden layer network needs to avoid over 
fitting or increasing the training time of samples.

In this paper, the trial-and-error method is 
used to determine the number of neurons in the 
double hidden layer. By detecting the network 
performance of different numbers of nodes in 
the double hidden layer for the same sample, the 
optimal number of nodes is obtained. Firstly, the 
trial-and-error experiment is carried out on the 
single hidden layer, and the optimal number of 
nodes in the network is 7, and the relative error 
of the prediction result is 0.112. Then eight 
groups of experiments are designed based on the 
characteristics of the double hidden layer network.

Based on the number of nodes in a single 
hidden layer, two principles should be followed 
in the construction of a double hidden layer: 1. 
The total number of nodes in a double hidden 
layer should not be greater than the number of 
nodes in a single hidden layer; 2. The number of 
nodes in the second hidden layer is less than that 
in the first layer. In <Table 1>, The number of 
double hidden layer nodes in six groups of 
experiments is not greater than 7, and two 
groups of experiments with more than 7 nodes 
are set for comparison. According to the relative 
error of the combination of multiple nodes in the 
hidden layer in the prediction results, the 
structure of the double hidden layer network is 
determined as: 3-4-3-2. The first layer of the 
double hidden layer has 4 nodes and the second 
layer has 3 nodes. This structure has a good 
performance in the prediction of the network. 
The experimental results are shown in <Table 1>. 
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Number of 
nodes in h1

Number of 
nodes in h2

Network relative 
error 

Running times 
/m

6 1 0.102 4.3

5 2 0.095 4.1

4 3 0.021 2.9

4 2 0.049 3.3

3 4 0.077 4.2

7 1 0.109 3.4

5 3 0.105 3.7

3 3 0.085 3.1

<Table 1> Network performance with different 
number of neurons

The running time in <Table 1> is the time 
when the network tends to be stable. Generally, 
when designing a more complex network, it is 
necessary to take the cross value of the network 
error change curve of the model in the training 
sample and the test sample. At this time, the 
error in the training sample tends to be smaller, 
while the error in the test set tends to be larger. 
If only the error value is considered, there may 
be over fitting, which performs well in the 
training samples and insufficient in the test 
samples, affecting the generalization ability of 
the model. There is no fitting phenomenon in 
this experiment, and the network performance is 
good.

3.3 Experimental verification
In the experiment of electroformed copper, 

the experiment was carried out according to the 
input parameters. Neural network prediction and 
physical experiments show that with the change 
of pulse current density, frequency and duty 
cycle, the microhardness and tensile strength of 
the electroforming layer have changed 
significantly, mainly in the following aspects:

(1) Neural network prediction and experiments 
show the effect of current density on microhardness 
and tensile strength. The microhardness of 
electroformed layer decreased with the increase 
of current density. When the average pulse 
current density is 2A·dm-2, the microhardness of 

copper layer is the highest, reaching 202.7Mpa. 
When the average pulse current density increases 
to 4A·dm-2, the microhardness of the copper 
layer decreases to 105.4Mpa. When DC power 
supply is used for electroforming, the 
microhardness of electroformed copper layer is 
lower than that of pulse current. When the 
average current density increases from 2A·dm-2, 
the grain size becomes larger. According to the 
fine grain strengthening theory, the hardness of 
the material is inversely proportional to the grain 
size. Therefore, the microhardness of the copper 
layer will continue to decline. 

(2)Neural network prediction and experiments 
show the effect of pulse frequency on 
microhardness and tensile strength. With the 
increase of pulse frequency, the microhardness 
of electroformed copper layer increases first and 
then decreases. When the pulse frequency is 
0.5kHz, the minimum microhardness of 
electroformed copper layer is 106.4Mpa. As the 
pulse frequency continues to increase, the 
microhardness of the electroforming layer also 
increases, and reaches the peak at 2kHz. 

(3) Neural network prediction and experiments 
show the effect of pulse duty cycle on microhardness 
and tensile strength. The microhardness of 
electroformed copper layer gradually increases 
with the decrease of duty cycle, and reaches to 
202.7Mpa when the duty cycle is 20%. When the 
duty cycle is 20%, the surface morphology of the 
copper layer is the most smooth and flat, and the 
grain size is the smallest and uniform. According 
to the fine grain strengthening theory, the 
microhardness of the electroforming layer is the 
largest, and the results are consistent. 

The tensile strength of the cast layer 
decreases with the increase of duty cycle. When 
other conditions are constant, when the duty 
cycle increases from 20% to 80%, the tensile 
strength of the electroforming layer decreases 
from 472Mpa to 353Mpa. The analysis shows 
that the change of duty cycle changes the grain 
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size and microstructure of electroformed copper 
layer, resulting in the change of strength of 
electroformed copper layer, and its change 
trend is consistent with the change trend of 
grain size.

4. CONCLUSION 

In this paper, The predicted results and 
experimental results of double hidden layer BP 
neural network can obtain the optimum tensile 
strength and microhardness of pulse cast copper. 
The conditions are as follows: current density is 
2A·dm-2, pulse frequency is 2kHz and pulse duty 
cycle is 20%. Under these conditions, a uniform 
and dense copper layer can be obtained.

The relationship between electroforming 
copper process parameters and tensile strength 
and microhardness is nonlinear and complex, 
and there is no specific correlation expression. 
Double hidden layer BP neural network has good 
nonlinear mapping ability and generalization 
ability, and has great advantages over other 
empirical formula methods. It carries out 
training and learning by optimizing the number 
of nodes in the double hidden layer of the 
network, and identifies the complex relationship 
between the input and output of electroforming 
copper process, which provides an innovative 
way to solve the optimization problem of 
electroforming copper process parameters.

Double hidden layer BP neural network can 
comprehensively consider the influence of 
electroforming copper process parameters on 
deposition results. The predicted tensile strength 
and microhardness are close to the actual 
experimental results, and the training accuracy is 
high. It has a good popularization ability in the 
field of intelligent electroforming.
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