• Title/Summary/Keyword: Double gap

Search Result 301, Processing Time 0.032 seconds

Design of BiCMOS Signal Conditioning Circuitry for Piezoresistive Pressure Sensor (압저항형 압력센서를 위한 BiCMOS 신호처리회로의 설계)

  • Lee, Bo-Na;Lee, Moon-Key
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.6
    • /
    • pp.25-34
    • /
    • 1996
  • In this paper, we have designed signal conditioning circuitry for piezoresistive pressure sensor. Signal conditioning circuitry consists of voltage reference circuit for sensor driving voltage and instrument amplifier for sensor signal amplification. Signal conditioning circuitry is simulated using HSPICE in a single poly double metal $1.5\;{\mu}m$ BiCMOS technology. Simulation results of band-gap reference circuit showed that temperature coefficient of $21\;ppm/^{\circ}C$ at the temperature range of $0\;{\sim}\;70^{\circ}C$ and PSRR of 80 dB. Simulation results of BiCMOS amplifier showed that dc voltage gain, offset voltage, CMRR, CMR and PSRR are outperformed to CMOS and Bipolar, but power dissipation and noise voltage were more improved in CMOS than BiCMOS and Bipolar. Designed signal conditioning circuitry showed high input impedance, low offset and good CMRR, therefore, it is possible to apply sensor and instrument signal conditioning circuitry.

  • PDF

Arthroscopic Rotator Cuff Repair: Single Row Technique (관절경적 회전근 개 봉합술: 일열 봉합 수기)

  • Park, Hyung-Bin
    • Clinics in Shoulder and Elbow
    • /
    • v.10 no.2
    • /
    • pp.155-159
    • /
    • 2007
  • Arthroscopic single-row rotator cuff repair is a well established surgical technique for the treatment of rotator cuff tears. However, the problem of postoperative retear remains a concern. Various avenues are being explored to address this problem. Some studies have suggested that restoring the anatomical footprint may improve the healing and initial strength of the repaired rotator cuff tendon. The double-row technique was introduced as a method of reconstructing the anatomical footprint. According to biomechanical studies on cadavers, this technique improved mechanical strength and reduced gap formation. However, the biological properties of reattached tendon such as tension, and vascularity have not been proved yet. Furthermore, the apparent mechanical superiority of the double-row over the single-row construction has not resulted in better functional outcomes. Therefore, the less complicated and less costly single-row technique is still the recommended treatment for rotator cuff repairs.

Simulation study on the mechanical properties and failure characteristics of rocks with double holes and fractures

  • Pan, Haiyang;Jiang, Ning;Gao, Zhiyou;Liang, Xiao;Yin, Dawei
    • Geomechanics and Engineering
    • /
    • v.30 no.1
    • /
    • pp.93-105
    • /
    • 2022
  • With the exploitation of natural resources in China, underground resource extraction and underground space development, as well as other engineering activities are increasing, resulting in the creation of many defective rocks. In this paper, uniaxial compression tests were performed on rocks with double holes and fractures at different angles using particle flow code (PFC2D) numerical simulations and laboratory experiments. The failure behavior and mechanical properties of rock samples with holes and fractures at different angles were analyzed. The failure modes of rock with defects at different angles were identified. The fracture propagation and stress evolution characteristics of rock with fractures at different angles were determined. The results reveal that compared to intact rocks, the peak stress, elastic modulus, peak strain, initiation stress, and damage stress of fractured rocks with different fracture angles around holes are lower. As the fracture angle increases, the gap in mechanical properties between the defective rock and the intact rock gradually decreased. In the force chain diagram, the compressive stress concentration range of the combined defect of cracks and holes starts to decrease, and the model is gradually destroyed as the tensile stress range gradually increases. When the peak stress is reached, the acoustic emission energy is highest and the rock undergoes brittle damage. Through a comparative study using laboratory tests, the results of laboratory real rocks and numerical simulation experiments were verified and the macroscopic failure characteristics of the real and simulated rocks were determined to be similar. This study can help us correctly understand the mechanical properties of rocks with defects and provide theoretical guidance for practical rock engineering.

Dynamic punching shear tests of flat slab-column joints with 5D steel fibers

  • Alvarado, Yezid A.;Torres, Benjamin;Buitrago, Manuel;Ruiz, Daniel M.;Torres, Sergio Y.;Alvarez, Ramon A.
    • Structural Engineering and Mechanics
    • /
    • v.81 no.3
    • /
    • pp.281-292
    • /
    • 2022
  • This study aimed to analyze the dynamic punching shear performance of slab-column joints under cyclic loads with the use of double-hooked end (5D) steel fibers. Structural systems such as slab-column joints are widely found in infrastructures. The susceptibility to collapse of such structures when submitted to seismic loads is highly dependent on the structural performance of the slab-column connections. For this reason, the punching capacity of reinforced concrete (RC) structures has been the subject of a great number of studies. Steel fibers are used to achieve a certain degree of ductility under seismic loads. In this context, 5D steel hooked fibers provide high levels of fiber anchoring, tensile strength and ductility. However, only limited research has been carried out on the performance under cyclic loads of concrete structural members containing steel fibers. This study covers this gap with experimental testing of five different full-scale subassemblies of RC slab-column joints: one without punching reinforcement, one with conventional punching reinforcement and three with 5D steel fibers. The subassemblies were tested under cyclic loading, which consisted of applying increasing lateral displacement cycles, such as in seismic situations, with a constant axial load on the column. This set of cycles was repeated for increasing axial loads on the column until failure. The results showed that 5D steel fiber subassemblies: i) had a greater capacity to dissipate energy, ii) improved punching shear strength and stiffness degradation under cyclic loads; and iii) increased cyclic loading capacity.

RC Snubber Analysis for Oscillation Reduction in Half-Bridge Configurations using Cascode GaN (Cascode GaN의 하프 브릿지 구성에서 오실레이션 저감을 위한 RC 스너버 분석)

  • Bongwoo, Kwak
    • Journal of IKEEE
    • /
    • v.26 no.4
    • /
    • pp.553-559
    • /
    • 2022
  • In this paper, RC snubber circuit design technology for oscillation suppression in half-bridge configuration of cascode gallium nitride (GaN) field effect transistors (FETs) is analyzed. A typical wide band-gap (WBG) device, cascode GaN FET, has excellent high-speed switching characteristics. However, due to such high-speed switching characteristics, a false turn-off problem is caused, and an RC snubber circuit is essential to suppress this. In this paper, the commonly used experimental-based RC snubber design technique and the RC snubber design technique using the root locus method are compared and analyzed. In the general method, continuous circuit changes are required until the oscillation suppression performance requirement is met based on experimental experience . However, in root locus method, the initial value can be set based on the non-oscillation R-C map. To compare the performance of the two aforementioned design methods, a simulation experiment and a switching experiment using an actual double pulse circuit are performed.

Photocurrent study on the splitting of the valence band and growth of $CdGa_2Se_4$ single crystal thin film by hot wall epitaxy (Hot Wall epitaxy(HWE)법에 의한 $CdGa_2Se_4$ 단결정 박막의 성장과 가전자대 갈라짐에 대한 광전류 연구)

  • Park, Chang-Sun;Hong, Kwang-Joon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.5
    • /
    • pp.179-186
    • /
    • 2007
  • Single crystal $CdGa_2Se_4$ layers were grown on a thoroughly etched semi-insulating GaAs(100) substrate at $420^{\circ}C$ with the hot wall epitaxy(HWE) system by evaporating the polycrystal source of $CdGa_2Se_4$ at $630^{\circ}C$. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction(DCXD). The carrier density and mobility of single crystal $CdGa_2Se_4$ thin films measured with Hall effect by van der Pauw method are $8.27{\times}10^{17}cm^{-3},\;345cm^2/V{\cdot}s$ at 293 K, respectively. The photocurrent and the absorption spectra of $CdGa_2Se_4/SI$(Semi-Insulated) GaAs(100) are measured ranging from 293 K to 10 K. The temperature dependence of the energy band gap of the $CdGa_2Se_4$ obtained from the absorption spectra was well described by the Varshni's relation $E_g(T)=2.6400eV-(7.721{\times}10^{-4}eV/K)T^2/(T+399K)$. Using the photocurrent spectra and the Hopfield quasicubic model, the crystal field energy(${\Delta}cr$) and the spin-orbit splitting energy(${\Delta}so$) far the valence band of the $CdGa_2Se_4$ have been estimated to be 106.5 meV and 418.9 meV at 10 K, respectively. The three photocurrent peaks observed at 10 K are ascribed to the $A_{1^-},\;B_{1^-},\;and\;C_{11}-exciton$ peaks.

Seasonal Variation of CO2 Exchange During the Barley Growing Season at a Rice-barley Double Cropping Paddy Field in Gimje, Korea (김제 벼-보리 이모작 논에서 보리재배 기간의 CO2 교환량의 계절적 변화)

  • Min, Sung-Hyun;Shim, Kyo-Moon;Kim, Yong-Seok;Hwang, Hae;Jung, Myung-Pyo;Choi, In-Tae
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.2
    • /
    • pp.137-145
    • /
    • 2014
  • Rice-barley double cropping system is typical in southwestern part of South Korea. However, the information of carbon dioxide ($CO_2$) exchange for barley growing season has still limited in comparison with rice. Using the eddy covariance (EC) technique, seasonal variation of $CO_2$ exchange was analyzed for the barley growing season at a rice-barley double cropping field in Gimje, Korea. The effects of environmental factors and biomass on the $CO_2$ flux also were investigated. Quality control and gap-filling of flux data were conducted before this analysis and investigation. The results indicated that $CO_2$ uptake increased rapidly at tillering stage and maximum net ecosystem exchange of $CO_2$ (NEE) occurred at the early of May, 2012 ($-11.2gCm^{-2}d^{-1}$), when the heading of barley occurred. NEE, gross primary production (GPP), and ecosystem respiration (Re) during the barley growing season were -348.0, 663.3, and $315.2gCm^{-2}$, respectively. In this study, an attempt has been made to measure NEE, GPP, and Re with the help of the EC system for the barley growing season for the first time in Korea, focusing on $CO_2$ exchange between the biosphere and the atmosphere.

Magnetic Field Analysis of 1 MVA HTS Transformer Windings

  • Park, Chan-Bae;Kim, Woo-Seok;Lee, Sang-Jin;Han, Jin-Ho;Park, Kyeong-Dal;Joo, Hyeong-Gil;Hong, Gye-Won;Hahn, Song-Yop
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.1
    • /
    • pp.66-70
    • /
    • 2003
  • In a HTS transformer, the perpendicular component of magnetic flux density ($B_r$) applied to HTS tapes of pancake windings becomes larger than that of solenoid winding, thereby decreasing the critical current in the HTS tapes. This paper introduces several methods to reduce $B_r$ applied to the HTS tapes in the transformer with double pancake windings by changing winding arrangements and the relative permeability of flux diverters. We have conducted a winding design for a single-phase 1MVA 22.9kV/6.6kV HTS transformer. We observed a change of $B_r$ due to a variation of gap-length between the high voltage windings and the low voltage windings, reciprocal arrangement and an increase of the number of the high voltage pancake. We also observed a change of Br on the HTS tapes due to variation of the relative permeability of flux diverters placed between the high voltage winding and the low voltage winding. Finally, we have designed a 1MVA 22.9kV/6.6kV HTS transformer winding using suggested methods and calculated transformer parameters by the 3D finite element method.

Effect of Thermal Annealing and Growth of ZnO:Li Thin Film by Pulesd Laser Deposition (펄스 레이저 증착법에 의한 ZnO:Li 박막 성장과 열처리 효과)

  • Hong Kwangjoon
    • Korean Journal of Materials Research
    • /
    • v.15 no.5
    • /
    • pp.293-300
    • /
    • 2005
  • ZnO:Li epilayers were synthesized on sapphire substrates by the pulesd laser deposition (PLD) after the surface of the ZnO:Li sintered pellet was irradiated by the ArF (193 nm) excimer laser. The growth temperature was fixed at $400^{\circ}C$. The crystalline structure of epilayers was investigated by the photoluminescence (PL) and double crystal X-ray diffraction (DCXD). The carrier density and mobility of epilayers measured by van der Pauw-Hall method are $2.69\times10cm^{-3}$ and $52.137cm^2/V{\cdot}s$ at 293 K, respectively. The temperature dependence of the energy band gap of epilayers obtained from the absorption spectra is well described by the Varshni's relation, $E_g(T)=3.5128eV{\cdot}(9.51\times10^{-4}eV/K)T^2/(T+280K)$. After the as-grown ZnO:Li epilayer was annealed in Zn atmospheres, oxygen and vaccum the origin of point defects of ZnO:Li has been investigated by PL at 10 K. The Peaks of native defects of $V_{zn},\;V_o,\;Zn_{int},\;and\;O_{int}$ showned on PL spectrum are classified as a donors or accepters type. We confirm that $ZnO:Li/Al_2O_3$ in vacuum do not form the native defects because ZnO:Li epilayers in vacuum existe in the form of stable bonds.

Effect of spin-polarized current injection on pair tunneling properties of $Bi_2$$Sr_2$Ca$Cu_2$$O_{8+x}$ intrinsic Josephson junctions

  • Shin, Ho-Seop;Lee, Hu-Jong;Do Bang;Nguyen Khac Mac
    • Progress in Superconductivity
    • /
    • v.5 no.1
    • /
    • pp.5-8
    • /
    • 2003
  • We studied the effect of spin injection on tunneling conduction properties of intrinsic Josephson junctions formed in $Bi_2$$Sr_2$$CaCu_2$$O_{ 8+x}$ single crystals. properties of an identical stack (10${\times}$5.0${\times}$0.030 $\mu\textrm{m}^3$) of intrinsic Josephson junctions were compared for the bias current injected through Au and Co electrodes. The suppression of the superconducting gap in the $_2$ double layers and the interlayer Josephson critical current was manifested in the tunneling current-voltage characteristics of the stacks. This effect appears to be caused by the pair breaking associated with spin-polarized carriers injected from the Co electrode into the $Bi_2$$Sr_2$$_2$O$CaCu_{ 8+x}$ single crystal. This study may provide valuable information on clarifying the mechanism of high- $T_{c}$ superconductivity.y.y.

  • PDF