• Title/Summary/Keyword: Double Split

Search Result 94, Processing Time 0.024 seconds

Free vibration analysis of double split beams (이중 층상균열보의 자유진동해석)

  • Han, B.K;Lee, S.H
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.12
    • /
    • pp.2008-2018
    • /
    • 1997
  • In this study, free vibration analysis of double through-the-width split beam is studied based on the author's earlier work. Each segment which constructs double through-the-width split beam is considered as Timoshenko beam. The effect of coupling between longitudinal and transverse vibration on the natural frequencies of split beams is considered. Data acquisition and modal test of double split beam for clamped-free boundary condition are carried out. Experimental and numerical results obtained by ANSYS were compared with the calculated data by present theory and their comparisons give good agreement with one another. The influences of the size and location of double split, shear deformation, and boundary conditions on the natural frequencies are demonstrated for illustrative purpose. Effects of double split on the dynamic characteristics of beams can be used to detect the size and the location of damages in structures.

Determination of double-K fracture parameters of concrete using split-tension cube test

  • Kumar, Shailendra;Pandey, S.R.
    • Computers and Concrete
    • /
    • v.9 no.2
    • /
    • pp.81-97
    • /
    • 2012
  • This paper presents development of double-K fracture model for the split-tension cube specimen for determining the unstable fracture toughness and initial cracking toughness of concrete. There are some advantages of using of split-tension cube test like compactness and lightness over the existing specimen geometries in practice such as three-point bend test, wedge splitting test and compact tension specimen. The cohesive toughness of the material is determined using weight function having four terms for the split-tension cube specimen. Some empirical relations are also suggested for determining geometrical factors in order to calculate stress intensity factor and crack mouth opening displacement for the same specimen. The results of double-K fracture parameters of split-tension cube specimen are compared with those obtained for compact tension specimen. Finally, the influence of the width of the load-distribution of split-tension cube specimen on the double-K fracture parameters for laboratory size specimens is investigated. The input data required for determining double-K fracture parameters for both the specimen geometries are obtained using well known version of the Fictitious Crack Model.

Design Formula for the Flexural Strength of a Double Split Tee Connection (상·하부 스플릿 T 접합부의 휨강도 설계식)

  • Yang, Jae-Gue;Kim, Joo-Wo;Kim, Yu
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.5
    • /
    • pp.511-520
    • /
    • 2012
  • The double split Tee connection, a type of full strength-partially restrained connection, has adequate flexural strength according to the changes in the thickness of the T-stub flange and the gauge distance of the high-strength bolts. Moreover, the double split Tee connection is designed and constructed with seismic connections that have enough ductility capacity applicable to ordinary moment frame and special moment frame by grade of steel, size of beam and column and geometric connection shape. However, such a domestic research and a proposal of a suitable design formula about the double split Tee connection are insufficient. Thus, many experimental and analytical studies are in need for the domestic application of the double split Tee connection. Therefore, this study aimed to examine and suggest feasibility of a design formula of the double split Tee connection of FEMA.

Development of Connection Details for a Double Split Tee Connection Without a Shear Tab (전단탭이 없는 상·하부 스플릿 티 접합부의 접합부상세 개발)

  • Yang, Jae Guen;Kim, Yong Boem
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.1
    • /
    • pp.53-64
    • /
    • 2016
  • The double split tee connection, a type of beam-to-column moment connection, exhibits different behavioral characteristics according to changes in the thickness of the T-stub flange, the gauge distance of the high-strength bolt, and the number and diameter of high-strength bolts. In general, the double split tee connection is idealized and designed so that a T-stub fastened to the top and bottom supports a flexural moment, and a shear tab supports a shear force. However, if the double split tee connection is applied to low-and medium-rise steel structures, the size of the beam member becomes small, and thus the shear tab cannot be bolted to the web of a beam. In this regard, this study was conducted to propose connection details to ensure that the double split tee connection with a geometric shape can display sufficient shear resisting capacity. To this end, experiments were conducted using full-scale specimens for the double split tee connection.

Evaluation of the Initial Rotational Stiffness of a Double Split Tee Connection (상·하부 T-stub 접합부의 초기회전강성 평가)

  • Kim, Hee Dong;Yang, Jae Guen;Lee, Jae Yun;Lee, Hyung Dong
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.2
    • /
    • pp.133-142
    • /
    • 2014
  • Double split tee connection is a full strength-partial restrained connection that suitable for ordinary moment frame and special moment frame which demonstrates behavior characteristics depending on the stiffness ratio of columns and beams, changes in the geometric shape of the T-stub, number of fasteners and effect of panel zone. For the double split tee connection to ensure structurally safe behavior, it needs to exhibit sufficient strength, stiffness and ductile capacity. This study sought to investigate the effects of the moment-rotation angle relationship of the double split tee connection and to evaluate the initial rotational stiffness of the double split tee connection depending on changes in the geometric shape of the T-stub. To this end, two different double split tee connection specimens are experimented which designed to change geometric parameter values (${\alpha}^{\prime}$) of the T-stub, and a three-dimensional finite element analysis was performed.

Design of a Steel Structural Building Using Double Split Tee Connections without Shear Tabs (전단탭이 없는 상·하부 스플릿 티 접합부를 적용한 강구조물의 설계)

  • Yang, Jae Guen;Kim, Yong Boem
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.2
    • /
    • pp.85-96
    • /
    • 2016
  • Double split tee connection has various strength, stiffness, and energy dissipation capacity according to changes of thickness of T-stub flange and gauge distance, number, and diameter of high-strength bolt. If the double split tee connection is applied to a low- or medium-rise steel structure, a shear tab can't be applied for supporting shear force because of geometrical limitation. So it is required to propose details of improved double split tee connection to support shear force as well as flexural force. This research was performed to see if enough rotational stiffness is found when the double split tee connection without shear tab which was obtained through analytic and experimental researches by Yang et al. is applied to a low- or medium-rise steel structure. Also, it was seen if the low- or medium-rise steel structure having double split tee connection without shear tab has safe structural behavior, as well as material saving effect.

Determination of Double-K Fracture Parameters of Concrete Using Split-Tension Cube: A Revised Procedure

  • Pandey, Shashi Ranjan;Kumar, Shailendra;Srivastava, A.K.L.
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.2
    • /
    • pp.163-175
    • /
    • 2016
  • This paper presents a revised procedure for computation of double-K fracture parameters of concrete split-tension cube specimen using weight function of the centrally cracked plate of finite strip with a finite width. This is an improvement over the previous work of the authors in which the determination of double-K fracture parameters of concrete for split-tension cube test using weight function of the centrally cracked plate of infinite strip with a finite width was presented. In a recent research, it was pointed out that there are great differences between a finite strip and an infinite strip regarding their weight function and the solution of infinite strip can be utilized in the split-tension specimens when the notch size is very small. In the present work, improved version of LEFM formulas for stress intensity factor, crack mouth opening displacement and crack opening displacement profile presented in the recent research work are incorporated. The results of the double-K fracture parameters obtained using revised procedure and the previous work of the authors is compared. The double-K fracture parameters of split-tension cube specimen are also compared with those obtained for standard three point bend test specimen. The input data required for determining double-K fracture parameters for both the specimen geometries for laboratory size specimens are obtained using well known version of the Fictitious Crack Model.

A Study on Double - Punch Test for Tensile Strength of Concrete (Double-Punch Test에 의한 콘크리트의 인장강도 시험에 관한 연구)

  • 이우종;고재군
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.2
    • /
    • pp.82-94
    • /
    • 1988
  • The purpose of this study is to introduce the Double Punch test method which is an indirect testing method of tensile strength of concrete, and to compare with the tensile strength of concrete as determined by the split-cylinder test, a practical method for performing the Double Punch test to obtain the tensile strength of concrete is proposed and recommended for general use. In this study, the dimensions of cylindrical specimens used in the Double-Punch test were 15X30cm, 15X15cm, 10${\times}$(20cm, and 5${\times}$l0cm, and in the split-cylinder test were 15${\times}$(30cm, 15${\times}$(15cm, and 10${\times}$(20cm. And the diameters of loading punches used in the Double-Punch test were 1.5cm, 2.5cm, and 3.5 cm. The results obtained from tests are summarized as follows ; 1. In the split-cylinder test, the tensile strength of concrete by the linear elasticity theory is similar to that of plasticity theory. 2. Both split-cylinder test and Double-Punch test, tensile strength of concrete is increased with decreasing specimen size. This tendency is identical when the ratio of specimen diameter to height is 1: 2, but that tendency is quite different when the ratio is 1: 3. In the Double-Punch test, if specimen size is constant, by increasing the punch size, tensile strength of concrete is increased, too. 4. Using a 15 ${\times}$( 15 cm cylinder specimen and 3.5 cm diameter punch in the Double Punch test would give the most uniform and consistent result in tensile strength, and the result showed a gQod correlation with splitting tensile strength from 15 x 30cm specimen. 5. In order to obtain satisfactory results and to nuninuze variability, it is proposed that specimens of 15 cm in diameter and 15 cm in height with two 3.5 cm diameter punches should be used. It seems, therefore, reasonable tt) take f't=0.0024 P(kg / cm$^2$) as a working formula for computing the tensile strength in the Double Punch test for concrete.

  • PDF

Proposal of Connection Details for a Double Split Tee Connection Without a Shear tap (전단탭이 없는 상·하부 스플릿 티 접합부의 접합부상세 제안)

  • Yang, Jae Guen;Lee, Hyung Dong;Kim, Yong Boem;Pae, Da Sol
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.5
    • /
    • pp.423-433
    • /
    • 2015
  • A double split tee connection, which is a beam-column moment connection, shows different behavioral characteristics under the influences of the thickness of a T-stub flange, a high-strength bolt gauge distance, and the number and diameter of a high-strength bolt. A double split tee connection is idealized and designed that a flexural moment normally acting on connections can be resisted by a T-stub and a shear force by a shear tap. However, where a double split tee connection is adopted to a low-and medium-rise steel structure, a small-sized beam member can be adopted. Then, a shear tab may not be bolted to the web of a beam. This study was conducted to suggest the details of a connection to secure that a double split tee connection with a geometric shape has a sufficient capacity to resist a shear force. To verify this, this study was conducted to make a three-dimensional nonlinear finite element analysis on a double split tee connection.

Prediction Model for the Initial Rotational Stiffness of a Double Split T Connection (상·하부 스플릿 T 접합부의 초기회전강성 예측모델)

  • Yang, Jae-Guen;Kim, Yun;Park, Jae-Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.3
    • /
    • pp.279-287
    • /
    • 2012
  • A double split tee connection is used as a connection that is suitable for ordinary moment frames or special moment frames according to the combination of variables of the thickness of the T-stub flange and the gauge distance of the high-strength bolts. In order to demonstrate safe structural behavior, a double split tee connection must meet the requirements for inter-story drift angles and the moment of connection, as defined in the Korea Building Code-Structural. In order to determine whether the these requirements are met, it is necessary to predict rotational stiffness and the ultimate plastic moment of the connection. Therefore, this study primarily aimed to propose an analytical model for predicting the rotational stiffness of a double split tee connection under a static load. Toward this end, a three-dimensional, non-linear finite element analysis was carried out. Then, the applicability of the proposed model was verified after comparing the test results of this study with other studies.