• Title/Summary/Keyword: Doping Rate

Search Result 210, Processing Time 0.028 seconds

Light-emitting diodes using gold nanoparticles (금 (gold) 나노 입자를 이용한 고분자 발광소자)

  • Park, Jong-Hyeok;Lim, Yong-Taik;Park, O-Ok;Kim, Jae-Kyeong;Yu, Jae-Woong;Kim, Young-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.119-122
    • /
    • 2003
  • We report a dramatic increase in the photo-stability of a blue-emitting polymer, poly(9,9-dioctylfluorene), achieved by the addition of gold nanoparticles to the polymer. The optical absorption band of gold nanoparticles is tuned to resonate the triplet exciton-ground state band gap energy of the polymer. The photo-oxidation rate of poly(9,9-dioctylfluorene) was drastically reduced by doping the polymer with a very small amount ($10^{-6}-10^{-5}$ volume fraction) of gold nanoparticles. The gold nanoparticles used herein act as the quenching agent of the triplet states and can be directly applied to various blue light emitting polymer thin film ( < 100 nm ) devices.

  • PDF

Local Oxidation Characteristics on Implanted 4H-SiC by Atomic Force Microscopy (원자힘 현미경을 이용한 이온 주입된 4H-SiC 상의 국소 산화 특성)

  • Lee, Jung-Ho;Ahn, Jung-Joon;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.4
    • /
    • pp.294-297
    • /
    • 2012
  • In this work, local oxidation behavior in phosphorous ion-implanted 4H-SiC has been investigated by using atomic force microscopy (AFM). The AFM-local oxidation (AFM-LO) has been performed on the implanted samples, with and without activation anneal, using an applied bias (~25 V). It has been clearly shown that the post-implantation annealing process at $1,650^{\circ}C$ has a great impact on the local oxidation rate by electrically activating the dopants and by modulating the surface roughness. In addition, the composition of resulting oxides changes depending on the doping level of SiC surfaces.

AsGeSeS 박막의 광학적 조건에 따른 저항변화 특성에 대한 연구

  • Nam, Gi-Hyeon;Jeong, Hong-Bae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.248-248
    • /
    • 2010
  • We have demonstrated new functionalities of Ag-doped chalcogenide glasses based on their capabilities as solid electrolytes. The influence of silver on the properties of the newly formed materials is regarded in terms of diffusion kinetics, and Ag saturation is related to the composition of the hosting material. Silver saturated in chalcogenide glass has been used in the formation of solid electrolyte, which is the active medium in the programmable metallization cell (PMC) device. In this paper, we investigated the optical properties of Ag-doped chalcogenide thin film by He-Ne laser beam exposure, which is concerned with the Ag-doping effect of PMCs before or after annealing. Chalcogenide bulk glass was fabricated by a conventional melt quenching technique. Amorphous chalcogenide and Ag thin films were prepared by e-beam evaporation at a deposition rate of about $4\;{\AA}/sec$. As a result of resistance change with laser beam exposure, the resistance abruptly dropped from the initial value of $1.4\;M{\Omega}$ to the saturated value of $400\;{\Omega}$.

  • PDF

Field emission from hydrogen-free DLC

  • Suk Jae chung;Han, Eun-Jung;Lim, Sung-Hoon;Jin Jang
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.3 no.1
    • /
    • pp.49-53
    • /
    • 1999
  • We have studied the field emission characteristics of diamond-like-carbon (DLC) films deposited by a layer-by-layer technique using plasma enhanced chemical vapor deposition, in which the deposition of a thin layer of DLC and a CH4 plasma exposure on its surface were carried out alternatively. The hydrogen-free DLC can be deposited by CH4 plasma exposure for 140 sec on a 5 nm DLC layer. N2 gas-phase doping in the CH4 plasma was also carried out to reduce the work function of the DLC. The optimum [N2]/[CH4] flow rate ratio was found to be 9% for the efficient electron emission, at which the onset-field was 7.2 V/$\mu\textrm{m}$. It was found that the hydrogen-free DLC has a stable electron emitting property.

  • PDF

Application of Ceramic Oxides to Low-voltage Varistor (산화물 세라믹스의 미소전압용 바리스터에 대한 응용)

  • Kang, D.H.;Kim, Y.H.;Park, Y.D.
    • Journal of Power System Engineering
    • /
    • v.4 no.4
    • /
    • pp.99-107
    • /
    • 2000
  • In this study several P type and N type ceramic semiconductors were prepared by atomic valence control and their electric resistivities were investigated with various concentrations of additive impurities. N-P junctions were made by thin film printing method and their varistor-like characteristics were investigated and their availability was discussed. The results are followings, 1) Some N type semiconductors with a proper concentration of additive impurity have minimum resistivities. 2) The N-P junction samples with ZnO as a constituent material of N type semiconductor have linearity in voltage-current characteristics, but the other N-P junction samples have the non-linearity, 3) Some N-P junction samples showed the good varistor-like characteristics.

  • PDF

High control Alkali & Alkaline-earth Metal Sources for OLED devices

  • Bonucci, Antonio;Bertolo, Johnny Mio;Riva, Mauro;Carretti, Corrado;Tominetti, Stefano;Kim, Sung-Hyun;Lee, Jun-Yeob
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.332-335
    • /
    • 2007
  • Electron injection improvement in OLED organic layers can be obtained by their doping or using alkaline-earth or alkali metals as electron injection layers (EIL). Common handling problems can be solved by an innovative metal dispensing technology to ensure controlled and reliable metal layers for OLED. Thickness and deposition rate of EIL during the process have been explored to optimize device performances.

  • PDF

Fabrication of Transparent Conducting Films of $In_2O_3$ by Vacuum Deposition (진공증착법에 의한 $In_2O_3$ 투명전도막의 제작)

  • 이기선
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.17 no.5
    • /
    • pp.43-47
    • /
    • 1980
  • Transparent conducting films of In2O3 were fabricated by elect yon beam evaporation method in an oxygen atmosphere of -10-4 Torr., and the optimum conditions of film deposition, as well as their electrical and optical properties were measured and analysed. Evaporation rate of 3~7A/sec, substrate temperature of over 30$0^{\circ}C$, and SnO2 doping of 2~5wt. % were the optimum deposition conditions. Under these conditions , the resistivities of the films were 2$\times$10-4 $\Omega$.cm and the visible transmittances were 85~90%.

  • PDF

Cathodoluminescence Enhancement of CaTiO3:Pr3+ by Ga Addition

  • Kang, Seung-Youl;Byun, Jung-Woo;Kim, Jin-Young;Suh, Kyung-Soo;Kang, Seong-Gu
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.5
    • /
    • pp.566-568
    • /
    • 2003
  • The phosphor $CaTiO_3:Pr^{3+}$ attracts much attention as a low-voltage red phosphor because of its good chromaticity and intrinsic conductivity. The addition of Ga into this CaTiO₃:Pr led the luminance intensity to greatly enhance without the change of the wavelength for the electronic transition and the peak shape of it. The increase of the recombination rate of electron-hole pairs through the Ga ion doping, which was expected to play a role of a hole-trap center, is proposed to be one of the reasons for the enhancement of the cathodoluminescence intensity.

Fabrication and Characterization of a-Si:H Films by a Remote Plasma Enhanced CVD (Remote Plasma Enhanced CVD에 의한 수소화된 비정질 실리콘 박막의 제작 및 특성연구)

  • Yang, Young-Sik;Yoon, Yeer-Jean;Jang, Jin
    • Proceedings of the KIEE Conference
    • /
    • 1987.07a
    • /
    • pp.513-516
    • /
    • 1987
  • Hydrogenated amorphous silicon (a-Si:H) films have been deposited, for thye first time, by a remote plasma chemical vapor deposition. The hydrogen radical play a important role to control the deposition rate, The bonded hydrogen content to silicon is independent of hydrogen partial pressure in the plasma. Optical gap of deposited a-Si:H lies between 1.7eV and 1.8eV and all samples have sharp absorption edge. B-doped a-Si:H films by a RPECVD has a high doping efficiency compared with plasma CVD. The Fermi level of 100ppm B-doped film lies at 0.5eV above valence band edge.

  • PDF

Electrical and Optical Properties of In-doped CdS Films Prepared by Vacuum Evaporation (진공증착법으로 제조한 CdS:In 박막의 전기 및 광학적 특성)

  • 김시열;임호빈
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1992.05a
    • /
    • pp.101-104
    • /
    • 1992
  • In-doped CdS thin films have been deposited at 150$^{\circ}C$ by simultaneous thermal evaporation of CdS and In. Deposition rate and film thickness were 8A/sec and about 1um, respectively. Indium doping concentration of films varied as Indium source temperature from 500$^{\circ}C$ to 700˚. Properties of In-CdS films have been investigatied by measurements of electrical resistivity, Hall effect, X-ray diffraction and optical trasmission spectra. The conductivity of these films was always n-type. The resistivity, carrier concentration, mobility and optical band gap dependence on Indium source temperature are reported. Carrier concentration and mobility of In-CdS films increased with increasing Indium source temperature: then they decreased. The variation of the optical band gap of In-CdS thin films are related to carrier concentration.

  • PDF