• Title/Summary/Keyword: Dopaminergic

Search Result 339, Processing Time 0.03 seconds

Inhibitory Mechanism of Bromocriptine on Catecholamine Release Evoked by Cholinergic Stimulation and Membrane Depolarization from the Rat Adrenal Medulla

  • Lim, Dong-Yoon;Lee, Yong-Gyoon;Kim, Il-Hwan
    • Archives of Pharmacal Research
    • /
    • v.25 no.4
    • /
    • pp.511-521
    • /
    • 2002
  • The purpose of this study was to determine whether bromocriptine affects the catecholamines (CA) secretion evoked in isolated perfused rat adrenal glands, by cholinergic stimulation, membrane depolarization and calcium mobilization, and to establish the mechanism of its action. The perfusion of bromocriptine ($1~10{\;}{\mu}M$) into an adrenal vein, for 60 min, produced relatively dose-dependent inhibition in the secretion of catecholamines (CA) evoked by acetylcholine (ACh, 5.32 mM), DMPP ($100{\;}{\mu}M$ for 2 min), McN-A-343 ($100{\;}{\mu}M$ for 2 min), cyclopiazonic acid (CPA, $10{\;}{\mu}M$ for 4 min) and Bay-K-8644 ($10{\;}{\mu}M$ for 4 min). High $K^+$ (56 mM)-evoked CA release was also inhibited, although not in a dose-dependent fashion. Also, in the presence of apomorphine ($100{\;}{\mu}M$), which is also known to be a selective $D_2$-agonist, the CA secretory responses evoked by ACh, high potassium, DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid were also significantly depressed. However, in adrenal glands preloaded with bromocriptine ($3{\;}{\mu}M$) in the presence of metoclopramide ($15{\;}{\mu}M$), a selective $D_2$-antagonist, the CA secretory responses evoked by ACh, high potassium, DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid considerably recovered as compared to that of bromocriptine only. Taken together, these results suggest that bromocriptine can inhibit the CA secretion evoked by stimulation of cholinergic receptors, as well as by membrane depolarization, in the perfused rat adrenal medulla. It is thought this inhibitory effect of bromocriptine may be mediated by inhibiting the influx of extracellular calcium and the release from intracellular calcium stores, through the activation of dopaminergic $D_2$-receptors located in the rat adrenomedullary chromaffin cells. Furthermore, these findings also suggest that the dopaminergic $D_2$-receptors may play an important role in regulating adrenomedullary CA secretion.

Papaverine Exerts Neuroprotective Effect by Inhibiting NLRP3 Inflammasome Activation in an MPTP-Induced Microglial Priming Mouse Model Challenged with LPS

  • Leem, Yea-Hyun;Park, Jin-Sun;Park, Jung-Eun;Kim, Do-Yeon;Kim, Hee-Sun
    • Biomolecules & Therapeutics
    • /
    • v.29 no.3
    • /
    • pp.295-302
    • /
    • 2021
  • Microglial priming is the process of microglial proliferation and activation in response to neurodegeneration and abnormal protein accumulation. Priming makes microglia susceptible to secondary inflammatory stimuli and causes exaggerated inflammatory responses. In the present study, we established a microglial priming model in mice by administering a single injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, 20 mg/kg). MPTP induced microglial activation without dopaminergic degeneration; however, subsequent treatment with a sub-toxic dose of lipopolysaccharides (LPS) induced an amplified inflammatory response and caused nigrostriatal dopaminergic degeneration. These pathological and inflammatory changes, including microglial activation and dopaminergic cell loss in the substantia nigra (SN) area were reversed by papaverine (PAP) administration. In addition, MPTP/LPS enhanced interleukin-1β (IL-1β) expression and processing via nod-like receptor protein 3 (NLRP3) inflammasome activation in the SN region of mice. However, PAP treatment suppressed inflammasome activation and subsequent IL-1β maturation. Moreover, PAP inhibited nuclear factor-κB (NF-κB) and enhanced cAMP-response element binding protein (CREB) activity in the SN of MPTP/LPS mice. These results suggest that PAP inhibits the activation of NLRP3 inflammasome by modulating NF-κB and CREB signaling pathways, which results in reduced microglial activation and neuronal cell death. Thus, PAP may be a potential candidate for the treatment of Parkinsons's disease, which is aggravated by systemic inflammation.

The prominin-like Gene Expressed in a Subset of Dopaminergic Neurons Regulates Locomotion in Drosophila

  • Ryu, Tae Hoon;Subramanian, Manivannan;Yeom, Eunbyul;Yu, Kweon
    • Molecules and Cells
    • /
    • v.45 no.9
    • /
    • pp.640-648
    • /
    • 2022
  • CD133, also known as prominin-1, was first identified as a biomarker of mammalian cancer and neural stem cells. Previous studies have shown that the prominin-like (promL) gene, an orthologue of mammalian CD133 in Drosophila, plays a role in glucose and lipid metabolism, body growth, and longevity. Because locomotion is required for food sourcing and ultimately the regulation of metabolism, we examined the function of promL in Drosophila locomotion. Both promL mutants and pan-neuronal promL inhibition flies displayed reduced spontaneous locomotor activity. As dopamine is known to modulate locomotion, we also examined the effects of promL inhibition on the dopamine concentration and mRNA expression levels of tyrosine hydroxylase (TH) and DOPA decarboxylase (Ddc), the enzymes responsible for dopamine biosynthesis, in the heads of flies. Compared with those in control flies, the levels of dopamine and the mRNAs encoding TH and Ddc were lower in promL mutant and pan-neuronal promL inhibition flies. In addition, an immunostaining analysis revealed that, compared with control flies, promL mutant and pan-neuronal promL inhibition flies had lower levels of the TH protein in protocerebral anterior medial (PAM) neurons, a subset of dopaminergic neurons. Inhibition of promL in these PAM neurons reduced the locomotor activity of the flies. Overall, these findings indicate that promL expressed in PAM dopaminergic neurons regulates locomotion by controlling dopamine synthesis in Drosophila.

Efficient Generation of Dopaminergic Neurons from Mouse Ventral Midbrain Astrocytes

  • Jin Yi Han;Eun-Hye Lee;Sang-Mi Kim;Chang-Hwan Park
    • Biomolecules & Therapeutics
    • /
    • v.31 no.3
    • /
    • pp.264-275
    • /
    • 2023
  • Parkinson's disease (PD) is a common neurodegenerative disorder characterized by tremors, bradykinesia, and rigidity. PD is caused by loss of dopaminergic (DA) neurons in the midbrain substantia nigra (SN) and therefore, replenishment of DA neurons via stem cell-based therapy is a potential treatment option. Astrocytes are the most abundant non-neuronal cells in the central nervous system and are promising candidates for reprogramming into neuronal cells because they share a common origin with neurons. The ability of neural progenitor cells (NPCs) to proliferate and differentiate may overcome the limitations of the reduced viability and function of transplanted cells after cell replacement therapy. Achaete-scute complex homolog-like 1 (Ascl1) is a well-known neuronal-specific factor that induces various cell types such as human and mouse astrocytes and fibroblasts to differentiate into neurons. Nurr1 is involved in the differentiation and maintenance of DA neurons, and decreased Nurr1 expression is known to be a major risk factor for PD. Previous studies have shown that direct conversion of astrocytes into DA neurons and NPCs can be induced by overexpression of Ascl1 and Nurr1 and additional transcription factors genes such as superoxide dismutase 1 and SRY-box 2. Here, we demonstrate that astrocytes isolated from the ventral midbrain, the origin of SN DA neurons, can be effectively converted into DA neurons and NPCs with enhanced viability. In addition, when these NPCs are inducted to differentiate, they exhibit key characteristics of DA neurons. Thus, direct conversion of midbrain astrocytes is a possible cell therapy strategy to treat neurodegenerative diseases.

Proteomic Analysis for Neuroprotective Effect of Gastrodia elata Blume in the Substantia Nigra of Mice (천마의 흑질 내 도파민성 신경세포 보호 효과에 대한 단백체학적 분석)

  • Chang-Hwan, Bae;Hee-Young, Kim;Hanul, Lee;Ji Eun, Seo;Dong Hak, Yoon;Seungtae, Kim
    • Korean Journal of Acupuncture
    • /
    • v.39 no.4
    • /
    • pp.142-151
    • /
    • 2022
  • Objectives : Parkinson's disease (PD) is a neurodegenerative disorder threatening the quality of life and highly occurred in over 65 years old. Gastrodia elata Blume (GEB), a traditional medicine used for the treatment of headache and convulsion, has been reported to have neuroprotective effect. This study was designed to investigate the neuroprotective effect of GEB and the proteomic changes in the substantia nigra (SN) of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice. Methods : Male eleven-week-old C57BL/6 mice were intraperitoneally injected with 30 mg/kg of MPTP at 24-h intervals for 5 days. Two hours after the daily MPTP injection, the mice were orally administered 800 mg/kg of GEB extract, which continued for 7 days beyond the MPTP injections, for a total of 12 consecutive days. Two hours after the final GEB administration, the brain samples were collected, and dopaminergic neuronal death and proteomic changes in the SN were evaluated. Results : GEB prevented the MPTP-induced dopaminergic neuronal death and regulated the expression of 11 proteins including thimet oligopeptidase, T-complex protein 1, glycine tRNA ligase, and pyruvate kinase isozymes M1. Conclusions : GEB prevents MPTP-induced dopaminergic neuronal death by regulating the proteins in the SN.

Differentiation of Dopaminergic and Cholinergic Neurons from Mesenchymal-like Stem Cells Derived from the Adipose Tissue (사람 지방 유래 중간엽 줄기세포의 도파민성 및 콜린성 신경세포분화)

  • Hong, In-Kyung;Jeong, Na-Hee;Kim, Ju-Ran;Do, Byung-Rok;Kim, Hea-Kwon;Kang, Sung-Goo
    • Development and Reproduction
    • /
    • v.12 no.1
    • /
    • pp.31-39
    • /
    • 2008
  • Neural tissue has limited intrinsic capacity of repair after injury, and the identification of alternate sources of neural stem cells has broad clinical potential. We isolated mesechymal-like stem cells from human adipose tissues (AT-MSCs), and studied on transdifferentiation-promoting conditions in neural cells. Dopaminergic and cholinergic neuron induction of AT-MSCs was also studied. Neural differentiation was induced by adding bFGF, EGF, dimethyl sulphoxide (DMSO) and butylated hydroxyanisole(BHA) in N2 Medium and N2 supplement. The immunoreactive cells for $\beta$-tubulin III, a neuron-specific marker, GFAP, an astrocyte marker, or Gal-C, an oligodendrocyte marker, were found. AT-MSCs treated with bFGF, SHH and FGF8 were differentiatied into dopaminergic neurons that were immunopositive for TH antibody. Differentiation of MSCs to cholinergic neurons was induced by combined treatment with basic fibroblast growth factor (bFGF), retinoic acid (RA) and sonic hedgehog (Shh). AT-MSCs treated with DMSO and BHA rapidly assumed the morphology of multipolar neurons. Both immunocytochemistry and RT-PCR analysis indicated that the expression of a number of neural markers including neuro D1, $\beta$-tubulin III, GFAP and nestinwas markedly elevated during this acute differentiation. While the stem cell markers such as SCF, C-kit, and Stat-3 were not expressed after preinduction medium culture, we confirmed the differentiation of dopaminergic and cholinergic neurons by TH/$\beta$-tubulin III or ChAT/ $\beta$-tubulin III positive cells. Conclusively, AT-MSCs can be differentiated into dopaminergic and cholinergic neuronsand these findings suggest that AT-MSCs are alternative cell source of treatment for neurodegenerative diseases.

  • PDF

Influence of Intracerebroventricular Haloperidol on the Renal Function of the Rabbit (가토신장기능에 미치는 측뇌실내 Haloperidol의 영향)

  • Kim, Joong-Ky;Choi, Bong-Kyu;Kook, Young-Johng
    • The Korean Journal of Pharmacology
    • /
    • v.18 no.2
    • /
    • pp.103-117
    • /
    • 1982
  • In an effort to provide evidence as to the regulatory role of the central dopaminergic system on the renal function, the effects of centrally administered dopamine and its specific antagonist haloperidol were investigated. Haloperidol (HA) given intracerebroventricularly (i.c.v.) induced antidiuresis in doses of 15 and $50{\mu}g/kg$. With $15{\mu}g/kg$ sodium reabsorption in the tubules was increased, while with $50{\mu}g/kg$ free-water reabsorption was increased. However, a marked diuresis with increased sodium and potassium was observed with $150{\mu}g/kg$. Hemodynamic changes were not evident, indicating that the diuresis is of tubular origin. Dopamine (DA), on the other hand, produced antidiuresis when given i.c.v. in a dose-related fashion. With smaller doses of 5 and $15{\mu}g/kg$ the antidiuresis was related to increased reabsorption of sodium in the tubules, but higher doses of 50 and $150{\mu}g/kg$ the decreases in renal blood flow and glomerular filtration rate were evident in addition to the tubular action. After pretreatment with $150{\mu}g/kg$ HA, the effects of $15{\mu}g/kg$ DA was abolished, but the antidiuretic actions of 50 and $150{\mu}g/kg$ were not blocked, and the natriuretic diuretic action of HA was overcome and became inconspicuous. These observations indicate that the central dopaminergic system influences the renal function by producing antidiuresis, and HA elicits diuresis and natriuresis by competitively antagonizing DA specifically on the central dopaminegic receptors. The antidiuresis observed with smaller doses of HA can be best explained by the facts that there are more than two types of DA-receptors in the brain and that the presynaptic autoreceptors on the dopaminergic neurones which affect the dopamine release at the synapse are more sensitive than the postsynaptic receptors. Overall, these data provide an evidence indicating that the central dopaminergic system plays a role in the regulation of renal function in the rabbit.

  • PDF

Nicotine Suppresses TNF-${\alpha}$ Expression in Human Fetal Astrocyte through the Modulation of Nuclear Factor-${\kappa}B$ Activation

  • Son, Il-Hong;Park, Yong-Hoon;Yang, Hyun-Duk;Lee, Sung-Ik;Han, Sun-Jung;Lee, Jai-Kyoo;Ha, Dae-Ho;Kang, Hyung-Won;Park, Joo-Young;Lee, Sung-Soo
    • Molecular & Cellular Toxicology
    • /
    • v.4 no.2
    • /
    • pp.106-112
    • /
    • 2008
  • Parkinson's disease (PD) progresses severely by a gradual loss of dopaminergic neurons in the substantia nigra (SN). Epidemiological studies showed that the incidences of PD were reduced by smoking of which the major component, nicotine might be neuroprotective. But the function of nicotine, which might suppress the incidences of PD, is still unknown. Fortunately, recently it was reported that a glial reaction and inflammatory processes might participate in a selective loss of dopaminergic neurons in the SN. The levels of tumour necrosis factor (TNF)-${\alpha}$ synthesised by astrocytes and microglia are elevated in striatum and cerebrospinal fluid (CSF) in PD. TNF-${\alpha}$ kills the cultured dopaminergic neurons through the apoptosis mechanism. TNF-${\alpha}$ release from glial cells may mediate progression of nigral degeneration in PD. Nicotine pretreatment considerably decreases microglial activation with significant reduction of TNF-${\alpha}$ mRNA expression and TNF-${\alpha}$ release induced by lipopholysaccharide (LPS) stimulation. Thus, this study was intended to explore the role of nicotine pretreatment to inhibit the expressions of TNF-${\alpha}$ mRNA in human fetal astrocytes (HFA) stimulated with IL-$1{\beta}$. The results are as follows: HFA were pretreated with 0.1, 1, and $10{\mu}g/mL$ of nicotine and then stimulated with IL-$1{\beta}$ (100 pg/mL) for 2h. The inhibitory effect of nicotine on expressions of TNF-${\alpha}$ mRNA in HFA with pretreated $0.1{\mu}g/mL$ of nicotine was first noted at 8hr, and the inhibitory effect was maximal at 12 h. The inhibitory effect at $1{\mu}g/mL$ of nicotine was inhibited maximal at 24 h. Cytotoxic effects of nicotine were noted above $10{\mu}g/mL$ of nicotine. Moreover, Nicotine at 0.1, 1 and $10{\mu}g/mL$concentrations significantly inhibited IL-$1{\beta}$-induced TF-${\kappa}B$ activation. Collectively, these results indicate that in activated HFA, nicotine may inhibit the expression of TNF-${\alpha}$ mRNA through the pathway which suppresses the NF-${\kappa}B$ activation. This study suggests that nicotine might be neuroprotective to dopaminergic neurons in the SN and reduce the incidences of PD.

The Role of Spinal Dopaminergic Transmission in the Analgesic Effect of Nefopam on Rat Inflammatory Pain

  • Kim, Do Yun;Chae, Joo Wung;Lim, Chang Hun;Heo, Bong Ha;Park, Keun Suk;Lee, Hyung Gon;Choi, Jeong Il;Yoon, Myung Ha;Kim, Woong Mo
    • The Korean Journal of Pain
    • /
    • v.29 no.3
    • /
    • pp.164-171
    • /
    • 2016
  • Background: Nefopam has been known as an inhibitor of the reuptake of monoamines, and the noradrenergic and/or serotonergic system has been focused on as a mechanism of its analgesic action. Here we investigated the role of the spinal dopaminergic neurotransmission in the antinociceptive effect of nefopam administered intravenously or intrathecally. Methods: The effects of intravenously and intrathecally administered nefopam were examined using the rat formalin test. Then we performed a microdialysis study to confirm the change of extracellular dopamine concentration in the spinal dorsal horn by nefopam. To determine whether the changes of dopamine level are associated with the nefopam analgesia, its mechanism was investigated pharmacologically via pretreatment with sulpiride, a dopaminergic D2 receptor antagonist. Results: When nefopam was administered intravenously the flinching responses in phase I of the formalin test were decreased, but not those in phase II of the formalin test were decreased. Intrathecally injected nefopam reduced the flinching responses in both phases of the formalin test in a dose dependent manner. Microdialysis study revealed a significant increase of the level of dopamine in the spinal cord by intrathecally administered nefopam (about 3.8 fold the baseline value) but not by that administered intravenously. The analgesic effects of intrathecally injected nefopam were not affected by pretreatment with sulpiride, and neither were those of the intravenous nefopam. Conclusions: Both the intravenously and intrathecally administered nefopam effectively relieved inflammatory pain in rats. Nefopam may act as an inhibitor of dopamine reuptake when delivered into the spinal cord. However, the analgesic mechanism of nefopam may not involve the dopaminergic transmission at the spinal level.

Paraquat Induced Heme Oxygenase-1 in Dopaminergic Cells (도파민 세포에서 Paraquat에 의한 헴산화효소-1의 유도)

  • Chun Hong Sung
    • KSBB Journal
    • /
    • v.20 no.1 s.90
    • /
    • pp.21-25
    • /
    • 2005
  • Paraquat, a widely used herbicide, has been suggested as a potential risk factor for Parkinson's disease. Heme oxygenase-1(HO-1), a marker for oxidative stress and endoplasmic reticulum(ER) stress, is known to catalyze heme to biliverdin, carbon monoxide and free iron in response to various stimuli. Here we show that paraquat activates HO-1 expression in a time-and dose-dependent manner in substantia nigra(SN) dopaminergic neuronal cells. Activation of Ho-1 by paraquat was regulated primarily at the level of gene transcription. Deletion analysis of the promoter and the 5' distal enhancers, E1 and E2, of the HO-1 gene revealed that the E2 enhancer is a potent inducer of the paraquat-dependent Ho-1 gene expression in dopamninergic neuronal cells. Mutational analysis of the E2 enhacer further demonstrated that the transcription factor activator protein-1(AP-1) plays an important role in mediating paraquat-induced HO-1 gene transcription. Moreover, using specific inhibitors of the mitogen-activated protein kinases(MAPKs), we investigated the role of paraquat and MAPKs for HO-1 gene regulation in dopaminergic cells. The c-Jun N-terminal kinase(JNK) inhibitor SP600125 significantly suppressed the expression of HO-1 by paraquat. All these results demonstrate that induction of HO-1 by paraquat requies the activation of the AP-1 and JNK pathway.