Inhibitory Mechanism of Bromocriptine on Catecholamine Release Evoked by Cholinergic Stimulation and Membrane Depolarization from the Rat Adrenal Medulla

  • Lim, Dong-Yoon (Department of Pharmacology, College of Medicine, Chosun University) ;
  • Lee, Yong-Gyoon (Department of Pharmacology, College of Medicine, Chosun University) ;
  • Kim, Il-Hwan (Department of Pharmacology, College of Medicine, Chosun University)
  • Published : 2002.08.01

Abstract

The purpose of this study was to determine whether bromocriptine affects the catecholamines (CA) secretion evoked in isolated perfused rat adrenal glands, by cholinergic stimulation, membrane depolarization and calcium mobilization, and to establish the mechanism of its action. The perfusion of bromocriptine ($1~10{\;}{\mu}M$) into an adrenal vein, for 60 min, produced relatively dose-dependent inhibition in the secretion of catecholamines (CA) evoked by acetylcholine (ACh, 5.32 mM), DMPP ($100{\;}{\mu}M$ for 2 min), McN-A-343 ($100{\;}{\mu}M$ for 2 min), cyclopiazonic acid (CPA, $10{\;}{\mu}M$ for 4 min) and Bay-K-8644 ($10{\;}{\mu}M$ for 4 min). High $K^+$ (56 mM)-evoked CA release was also inhibited, although not in a dose-dependent fashion. Also, in the presence of apomorphine ($100{\;}{\mu}M$), which is also known to be a selective $D_2$-agonist, the CA secretory responses evoked by ACh, high potassium, DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid were also significantly depressed. However, in adrenal glands preloaded with bromocriptine ($3{\;}{\mu}M$) in the presence of metoclopramide ($15{\;}{\mu}M$), a selective $D_2$-antagonist, the CA secretory responses evoked by ACh, high potassium, DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid considerably recovered as compared to that of bromocriptine only. Taken together, these results suggest that bromocriptine can inhibit the CA secretion evoked by stimulation of cholinergic receptors, as well as by membrane depolarization, in the perfused rat adrenal medulla. It is thought this inhibitory effect of bromocriptine may be mediated by inhibiting the influx of extracellular calcium and the release from intracellular calcium stores, through the activation of dopaminergic $D_2$-receptors located in the rat adrenomedullary chromaffin cells. Furthermore, these findings also suggest that the dopaminergic $D_2$-receptors may play an important role in regulating adrenomedullary CA secretion.

Keywords

References

  1. Anton, A.H., and Sayre, D.F., A study of the factors affecting the aluminum oxide trihydroxy indole procedure for the analysis of catecholamines. J. Pharmacol. Exp. Ther., 138, 360-375 (1962)
  2. Artalejo, A.R., Ariano, M.A., Perlman, R.L., and Fox, A.P., Activation of facilitation calcium channels in chromaffin cells by $D_1$ dopamine receptors through an AMP/protein kinase A-dependent mechanism. Nature, 348, 239-242 (1990) https://doi.org/10.1038/348239a0
  3. Artalejo, A.R., Garcia, A.G., Montiel, C., and Sanchez-Garcia, P., A dopaminergic receptor modulates catecholamine release from the cat adrenal gland. J. Physial., 362, 359-368 (1985) https://doi.org/10.1113/jphysiol.1985.sp015683
  4. Bigornia, L., Allen, C.N., Jan, C.R., Lyon, R.A., Titeler, M., and Schneider, A.S., $D_2$ doparnine receptors modulate calcium channel currents and catecholamine secretion in bovine adrenal chromaffin cells. J. Pharmacal. Expt. Ther., 252(2), 586-592 (1990)
  5. Bigornia, L., Suozzo, M., Ryan, K.A., Napp, D., and Schneider, A.S., Dopamine receptors on adrenal chromaffin cells modulate calcium uptake and catecholamine release. J. Neurochem., 51, 999-1006 (1988) https://doi.org/10.1111/j.1471-4159.1988.tb03060.x
  6. Blanco, M., Hurtado, N., Jelambi, I., Perez, G., Carrillo, M., Gomez, J., Bravo, C., Gomez, H., Collet, H., and Velasco, M., Dopaminergic influence on cardiovascular responses to exercise stress in hypertensive subjects. Am. J. Ther., 4, 31-33 (1997) https://doi.org/10.1097/00045391-199701000-00007
  7. Caron, M.G., Beaulieu, M., Raymond, V., Gagne, B., Drouin, J., Lefkowitz, R.J., and Labrie, F., Dopaminergic receptors in the anterior pituitary gland. J. BioI. Chem., 253, 2244-2253 (1978)
  8. Challiss, R.A.J., Jones, J.A., Owen, P.J., and Boarder, M.R., Changes in inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate mass accumulations incultured adrenal chromaffin cells in response to bradykinin and histamine. J. Neurochem., 56, 1083-1086 (1991) https://doi.org/10.1111/j.1471-4159.1991.tb02033.x
  9. Cheek, T.R., O'Sullivan, A.J., Moreton, R.B., Berridge, M.J., and Burgoyne, R.D., Spatial localization of the stimulus-induced rise in cytosolic $Ca^{2+}$ in bovine adrenal chromaffin cells: Distinct nicotinic and muscarinic patterns. FEBS. Lett., 247, 429-434 (1989) https://doi.org/10.1016/0014-5793(89)81385-7
  10. Collet, A.R., and Story, D.F., Is catecholamine release from the rabbit adrenal gland subject to regulation through dopamine receptors or $\beta$-adrenoceptors? Clin. Exp. Pharmacol. Physial., 9, 436 (1982a)
  11. Collet, A.R., and Story, D.F., Release of $^3H$-adrenaline from an isolated intact preparation of the rabbit adrenal gland: No evidence for release modulatory $\alpha$-adrenoceptors. J. Auton. Pharmacol., 2, 25-34 (1982b) https://doi.org/10.1111/j.1474-8673.1982.tb00467.x
  12. Cooper, D.M.F., Bier-Laning, C.M., Halford, M.K., Ahlijanian, M.K., and Zahniser, N.R., Dopamine acting through $D_2$ receptors inhibits rat striatal adenylate cyclase by a GTP-dependentprocess. Mol. Pharmacol., 29, 113-119 (1986)
  13. Dahmer, M.K., and Senogles, S.E., Differential inhibition of secretagogue-stimulated sodium uptake in adrenal chromaffin cells by activation of $D_4$ and $D_5$ dopamine receptors. J. Neurochem., 67, 1960-1964 (1996) https://doi.org/10.1046/j.1471-4159.1996.67051960.x
  14. Damase-Michel, C., Montastruc, J.L., Geelen, G., Saint-Blanquat, G.D., and Tran, M.A., Effect of quinpirole a specific dopamine DA2 receptor agonist on the sympathoadrenal system in dogs. J. Pharmacol. Expt. Ther., 252(2), 770-777(1990)
  15. Damase-Michell, C., Montastruc, J.L., and Tran, M.A., Dopaminergic inhibition of catecholamine secretion from adrenal medulla is mediated by $D_2$-like but not $D_1$-like dopamine receptors. Clin. Expt. Pharmacol. Physiol., 26(suppl.), S67-S68 (1999)
  16. De Vliefer, T.A., Lodder, J.C., Werkman, T.R., and Stoof, J.C., Dopamine receptor stimulation has multiple effects on ionic currents in neuroendocrine cells of the pond snail Lymnaea stagnalis. (Abstr) Neuroscience Lett [Suppl]., 22, S418 (1985)
  17. Fohr, K.J., Ahnert-Hilger, G., Stecher, B., Scott, J., and Gratzl, M., GTP and $Ca^{2+}$ modulate the inositol 1,4,5-trisphosphate-dependent $Ca^{2+}$ release in streptolysin O-permeabilized bovine adrenal chromaffin cells. J. Neurochem., 56, 665-670 (1991) https://doi.org/10.1111/j.1471-4159.1991.tb08201.x
  18. Forsberg, E.J., Rojas, E., and Pollard, H.P., Muscarinic receptor enhancement of nicotinic-induced catecholamine secretion may be mediated by phosphoinositide metabolism in bovine adrenal chromaffin cells. J. BioI. Chem., 261, 4915-4920 (1986)
  19. Garcia, A.G., Sala, F., Reig, J.A., Viniegra, S., Frias, J., Fonteriz, R., and Gandia, L., Dihydropyridine Bay-K-8644 activates chromaffin cell calcium channels. Nature, 309, 69-71 (1984) https://doi.org/10.1038/309069a0
  20. Goerger, D.E., and Riley, R.T., Interaction of cyclopiazonic acid with rat skeletal muscle sarcoplasmic reticulum vesicles. Effect on $Ca^{2+}$ binding and $Ca^{2+}$ permeability. Biochem. Pharmacol., 38, 3995-4003 (1989) https://doi.org/10.1016/0006-2952(89)90679-5
  21. Gonzales, M.C., Artalejo, A.R., Montiel, C., Hervas, P.P., and Garcia, A.G., Characterization of a dopaminergic receptor that modulates adrenomedullary catecholamine release. J. Neurochem., 47, 382-388 (1986) https://doi.org/10.1111/j.1471-4159.1986.tb04513.x
  22. Huettl. P., Gerhardt, G.A., Browning, M.D., and Masserano, J.M., Effects of dopamine receptor agonists and antagonists or catecholamine release in bovine chromaffin cells. J. Pharmacol. Expt. Ther., 257(2), 567-574 (1991)
  23. Kebabian, J. W., and Caine, D. B., Multiple receptors for dopamine. Nature, 277(5692), 93-96 (1979) https://doi.org/10.1038/277093a0
  24. Kebabian. J. W., Augi, T., van Oene. J. C., Shigematsu. K., and Saavedra, J. M., The dopamine receptor: New perspectives. Trends. Pharmacol. Sci., 7, 96-99 (1986) https://doi.org/10.1016/0165-6147(86)90272-5
  25. Kim, K.T., and Weathead, E.W., Cellular responses of $Ca^{2+}$ from extracellular and intracellular sources are different as shown by simultaneous measurements of cytosolic $Ca^{2+}$ and secretion from bovine chromaffin cells. Proc. Natl. Acad .Sci. USA., 86, 9881-9885 (1989) https://doi.org/10.1073/pnas.86.24.9881
  26. Lim, D.Y., Kim, C.D., and Ahn, K.W., Influence of TMB-8 on secretion of catecholamines from the perfused rat adrenal glands. Arch. Pharm. Res., 15(2), 115-125 (1992) https://doi.org/10.1007/BF02974085
  27. Lim, D.Y., Kim, K. H., Choi, C.H., Yoo, H.J., Choi, D.J., and Lee, E.H., Studies on secretion of catecholamines evoked by metoclopramide of the rat adrenal gland. Korean J. Pharmacol., 25(1), 31-42 (1989)
  28. Lim, D.Y., Yoon, J.K., and Moon, B., Interrelationship between dopaminergic receptors and catecholamine secretion from the rat adrenal gland. Korean J. Pharmacol., 30(1), 87-100 (1994)
  29. Luchsinger, A., Grilli, M., Forte, P., Morales, E., and Velasco, M., Metoclopramide blocks bromocriptine-induced antihypertensive effect in hypertensive patients. International J. Clin. Pharmacol. Ther., 3, 509-512 (1995)
  30. Lyon, R.A., Titeler, M., Bigornia, L., and Schneider, A.S., $D_2$ dopamine receptors on bovine chromaffin cell membranes: identification and characterization by [$^3H$] N-methylspiperone binding. J. Neurochem., 48, 631-635 (1987) https://doi.org/10.1111/j.1471-4159.1987.tb04139.x
  31. Malgaroli, A., Valiar, L., Elahi, F.R., Pozzan, T., Spada, A., and Meldolesi, J., Dopamine inhibits cytosolic $Ca^{2+}$ increases in rat lactotroph cells. J. BioI. Chem., 262, 13920-13927 (1987)
  32. Memo, M., Carboni, E., Trabucchi, M., Carruba, M.O., and Spano, P.F., Dopamine inhibition of neurotensin-induced increase in $Ca^{2+}$ influx intro rat pituitary cells. Brain Res., 347, 253-257 (1985) https://doi.org/10.1016/0006-8993(85)90184-2
  33. Merrit, J.E., and Brown, B.L., The possible involvement of both calcium and cyclic AMP in the dopaminergic inhibition of prolactin secretion. Life Sci., 35, 707-711 (1984) https://doi.org/10.1016/0024-3205(84)90338-2
  34. Mortastruc, J.L., Gaillard, G., Rascol, O., Tran, M.A., and Montastruc, P., Effect of apomorphine on adrenal medullary catecholamine levels. Fundam. Clin. Pharmacol., 3(6), 665-670 (1989)
  35. Montiel, C., Artalejo, A. R., Bermejo, P.M., and Sanchez-Garcia P., A dopaminergic receptor in adrenal medulla as a possible site of action for the droperidol-evoked hypertensive response. Anesthesiology, 65(5), 474-479 (1986) https://doi.org/10.1097/00000542-198609001-00472
  36. ODowd, B. F., Structures of dopamine receptors. J. Neurochem., 60(3), 804-816(1993) https://doi.org/10.1111/j.1471-4159.1993.tb03224.x
  37. Ouick, M., Bergeron, L., Mount, H., and Philte, J., Dopamine $D_2$ receptor binding in adrenal medulla: characterization using [$^3H$] spiperone. Biochem. Pharmacol., 36, 3707-3713 (1987) https://doi.org/10.1016/0006-2952(87)90024-4
  38. Roquebert, J., Alaoui, K., Moran., and Benito, A., Cardiovascular effects of bromocriptine in rats: role of peripheral adrenergic and dopaminergic receptors. J. Auton. Pharmacol., 10, 85-96 (1990) https://doi.org/10.1111/j.1474-8673.1990.tb00008.x
  39. Schettini, G., Cronin, M.J., and Macleod, R.M., Adenosine 3', 5'- monophosphate(cAMP) and calcium calmodulin interrelation in the control of prolactin secretion: evidence for dopamine inhibition of cAMP accumulation and prolactin release after calcium mobilization. Endocrinology, 112, 1801-1807 (1983) https://doi.org/10.1210/endo-112-5-1801
  40. Schramm, M., Thomas, G., Towart, R., and Franckowiak, G., Novel dihydropyridines with positive isotropic action through activation of $Ca^{2+}$channels. Nature, 303, 535-537 (1982) https://doi.org/10.1038/303535a0
  41. Seidler, N.W., Jona, I., Vegh, N., and Martonosi, A., Cyclopiazonic acid is a specific inhibitor of the $Ca^{2+}$-ATPase of sarcoplasimc reticulum. J. BioI. Chem., 264, 17816-17823 (1989)
  42. Sibley, D. R., and Monsma, F.J., Molecular biology of dopamine receptors. Trends Pharmacol. Sci., 13(2), 61-69 (1992) https://doi.org/10.1016/0165-6147(92)90025-2
  43. Sorimachi, M., Yamagami, K., and Nishimura, S., A muscarinic receptor agonist mobilizes $Ca^{2+}$ from caffeine and inositol-1,4,5-trisphosphate-sensitive $Ca^{2+}$ stores in cat adrenal chromaffin cells. Brain Res., 571, 154-158 (1992) https://doi.org/10.1016/0006-8993(92)90523-C
  44. Suzuki, M., Muraki, K., Imaizumi, Y., and Watanabe, M., Cyclopiazonic acid, an inhibitor of the sarcoplasmic reticulum $Ca^{2+}$-pump, reduces $Ca^{2+}$-dependent $K^{+}$ currents in guineapig smooth muscle cells. Br. J. Pharmacol., 107, 134-140 (1992) https://doi.org/10.1111/j.1476-5381.1992.tb14475.x
  45. Tallarida, R.J., and Murray, R.B., Manual of pharmacologic calculation with computer programs. 2nd Ed. New York Speringer-Verlag, pp. 131-136 (1987)
  46. Uceda, G., Artalejo, A.R., Lopez, M.G., Abad, F., Neher, E., and Garcia, A.G., $Ca^{2+}$-activated $K^+$ channels modulated muscarinic secretion in cat chromaffin cells. J. Physiol., 454, 213-230 (1992) https://doi.org/10.1113/jphysiol.1992.sp019261
  47. Vallar, L., and Meldolesi, J., Mechanisms of signal transduction at the dopamine D2 receptor. Trends Pharmacol. Sci., 10(2), 74-77 (1989) https://doi.org/10.1016/0165-6147(89)90082-5
  48. Van Loon, G. R., Sole, M. J., Bain, J., and Ruse, J. L., Effects of bromocriptine on plasma catecholamines in normal men. Neuroendocrinology, 28, 425-434 (1979) https://doi.org/10.1159/000122891
  49. Wada, Y., Satoh, K., and Taira, N., Cardiovascular profile of Bay-K-8644, a presumed calcium channel activator in the dog. Naunyn-Schmiedebergs. Arch. Pharmacol., 328, 382-387 (1985) https://doi.org/10.1007/BF00692905
  50. Wakade, A.R., Studies on secretion of catecholamines evoked by acetylcholine or transmural stimulation of the rat adrenal gland. J. Physiol., 313, 463-480 (1981) https://doi.org/10.1113/jphysiol.1981.sp013676
  51. Ziegler, M.G., Lake, C.R., Williams, A.C., Teychenne, P.F., Shoulson, I., and Steinsland, O., Bromocriptine inhibitsn norepinephrine release. Clin. Pharmacol. Ther., 25, 137-142 (1979) https://doi.org/10.1002/cpt1979252137