References
- Dwyer, Z., Rudyk, C., Thompson, A., Farmer, K., Fenner, B., Fortin, T., Derksen, A., Sun, H. and Hayley, S.; CLINT (Canadian LRRK2 in inflammation team) (2020) Leucine-rich repeat kinase-2 (LRRK2) modulates microglial phenotype and dopaminergic neurodegeneration. Neurobiol. Aging 91, 45-55. https://doi.org/10.1016/j.neurobiolaging.2020.02.017
- Giralt, A., Saavedra, A., Carreton, O., Arumi, H., Tyebji, S., Alberch, J. and Perez-Navarro, E. (2013) PDE10 inhibition increases GluA1 and CREB phosphorylation and improves spatial and recognition memories in a Huntington's disease mouse model. Hippocampus 23, 684-695. https://doi.org/10.1002/hipo.22128
- Gordon, R., Albornoz, E. A., Christie, D. C., Langley, M. R., Kumar, V., Mantovani, S., Robertson, A. A. B., Butler, M. S., Rowe, D. B., O'Neill, L. A., Kanthasamy, A. G., Schroder, K., Cooper, M. A. and Woodruff, T. M. (2018) Inflammasome inhibition prevents alpha-synuclein pathology and dopaminergic neurodegeneration in mice. Sci. Transl. Med. 10, eaah4066. https://doi.org/10.1126/scitranslmed.aah4066
- Han, X., Lamshoft, M., Grobe, N., Ren, X., Fist, A. J., Kutchan, T. M., Spiteller, M. and Zenk, M. H. (2010) The biosynthesis of papaverine proceeds via (S)-reticuline. Phytochemistry 71, 1305-1312. https://doi.org/10.1016/j.phytochem.2010.04.022
- Hebert, G., Arsaut, J., Dantzer, R. and Demotes-Mainard, J. (2003) Time-course of the expression of inflammatory cytokines and matrix metalloproteinases in the striatum and mesencephalon of mice injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, a dopaminergic neurotoxin. Neurosci. Lett. 349, 191-195. https://doi.org/10.1016/S0304-3940(03)00832-2
- von Herrmann, K. M., Salas, L. A., Martinez, E. M., Young, A. L., Howard, J. M., Feldman, M. S., Christensen, B. C., Wilkins, O. M., Lee, S. L., Hickey, W. F. and Havrda, M. C. (2018) NLRP3 expression in mesencephalic neurons and characterization of a rare NLRP3 polymorphism associated with decreased risk of Parkinson's disease. NPJ Parkinsons Dis. 4, 24 https://doi.org/10.1038/s41531-018-0061-5
- Koprich, J. B., Reske-Nielsen, C., Mithal, P. and Isacson, O. (2008) Neuroinflammation mediated by IL-1beta increases susceptibility of dopamine neurons to degeneration in an animal model of Parkinson's disease. J. Neuroinflammation 5, 8. https://doi.org/10.1186/1742-2094-5-8
- Langston, J. W., Forno, L. S., Tetrud, J., Reeves, A. G., Kaplan, J. A. and Karluk, D. (1999) Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure. Ann. Neurol. 46, 598-605. https://doi.org/10.1002/1531-8249(199910)46:4<598::AID-ANA7>3.0.CO;2-F
- Lee, E., Hwang, I., Park, S., Hong, S., Hwang, B., Cho, Y., Son, J. and Yu, J. W. (2019a) MPTP-driven NLRP3 inflammasome activation in microglia plays a central role in dopaminergic neurodegeneration. Cell Death Differ. 26, 213-228. https://doi.org/10.1038/s41418-018-0124-5
- Lee, G. S., Subramanian, N., Kim, A. I., Aksentijevich, I., GoldbachMansky, R., Sacks, D. B., Germain, R. N., Kastner, D. L. and Chae, J. J. (2012) The calcium-sensing receptor regulates the NLRP3 inflammasome through Ca2+ and cAMP. Nature 492, 123-127. https://doi.org/10.1038/nature11588
- Lee, Y. Y., Park, J. S., Leem, Y. H., Park, J. E., Kim, D. Y., Choi, Y. H., Park, E. M., Kang, J. L. and Kim, H. S. (2019b) The phosphodiesterase 10 inhibitor papaverine exerts anti-inflammatory and neuroprotective effects via the PKA signaling pathway in neuroinflammation and Parkinson's disease mouse models. J. Neuroinflammation 16, 246. https://doi.org/10.1186/s12974-019-1649-3
- Leem, Y. H., Park, J. S., Park, J. E., Kim, D. Y., Kang, J. L. and Kim, H. S. (2020) Papaverine inhibits α-synuclein aggregation by modulating neuroinflammation and matrix metalloproteinase-3 expression in the subacute MPTP/P mouse model of Parkinson's disease. Biomed. Pharmacother. 130, 110576. https://doi.org/10.1016/j.biopha.2020.110576
- Liu, C. Y., Wang, X., Liu, C. and Zhang, H. L. (2019) Pharmacological targeting of microglial activation: new therapeutic approach. Front. Cell. Neurosci. 13, 514. https://doi.org/10.3389/fncel.2019.00514
- Martinez, E. M., Young, A. L., Patankar, Y. R., Berwin, B. L., Wang, L., von Herrmann, K. M., Weier, J. M. and Havrda, M. C. (2017) Editor's highlight: Nlrp3 is required for inflammatory changes and nigral cell loss resulting from chronic intragastric rotenone exposure in mice. Toxicol. Sci. 159, 64-75. https://doi.org/10.1093/toxsci/kfx117
- Martinon, F., Burns, K. and Tschopp, J. (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol. Cell 10, 417-426. https://doi.org/10.1016/S1097-2765(02)00599-3
- Mogi, M., Harada, M., Narabayashi, H., Inagaki, H., Minami, M. and Nagatsu, T. (1996) Interleukin (IL)-1 beta, IL-2, IL-4, IL-6 and transforming growth factor-alpha levels are elevated in ventricular cerebrospinal fluid in juvenile parkinsonism and Parkinson's disease. Neurosci. Lett. 211, 13-16. https://doi.org/10.1016/0304-3940(96)12706-3
- Mogi, M., Togari, A., Kondo, T., Mizuno, Y., Komure, O., Kuno, S., Ichinose, H. and Nagatsu, T. (2000) Caspase activities and tumor necrosis factor receptor R1 (p55) level are elevated in the substantia nigra from parkinsonian brain. J. Neural Transm. (Vienna) 107, 335-341. https://doi.org/10.1007/s007020050028
- Neher, J. J. and Cunningham, C. (2019) Priming microglia for innate immune memory in the brain. Trends Immunol. 40, 358-374. https://doi.org/10.1016/j.it.2019.02.001
- Norden, D. M., Muccigrosso, M. M. and Godbout, J. P. (2015) Microglial priming and enhanced reactivity to secondary insult in aging, and traumatic CNS injury, and neurodegenerative disease. Neuropharmacology 96, 29-41. https://doi.org/10.1016/j.neuropharm.2014.10.028
- Pajares, M., Rojo, A. I., Manda, G., Bosca, L. and Cuadrado, A. (2020) Inflammation in Parkinson's disease: mechanisms and therapeutic implications. Cells 9, 1687. https://doi.org/10.3390/cells9071687
- Perry, V. H. and Holmes, C. (2014) Microglial priming in neurodegenerative disease. Nat. Rev. Neurol. 10, 217-224. https://doi.org/10.1038/nrneurol.2014.38
- Perry, V. H. and Teeling, J. (2013) Microglia and macrophages of the central nervous system: the contribution of microglia priming and systemic inflammation to chronic neurodegeneration. Semin. Immunopathol. 35, 601-612. https://doi.org/10.1007/s00281-013-0382-8
- Pott Godoy, M. C., Tarelli, R., Ferrari, C. C., Sarchi, M. I. and Pitossi, F. J. (2008) Central and systemic IL-1 exacerbates neurodegeneration and motor symptoms in a model of Parkinson's disease. Brain 131, 1880-1894. https://doi.org/10.1093/brain/awn101
- Przedborski, S. (2017) The two-century journey of Parkinson disease research. Nat. Rev. Neurosci. 18, 251-259. https://doi.org/10.1038/nrn.2017.25
- Seok, J. K., Kang, H. C., Cho, Y. Y., Lee, J. S. and Lee, J. Y. (2021) Therapeutic regulation of the NLRP3 inflammasome in chronic inflammatory diseases. Arch. Pharm. Res. 44, 16-35. https://doi.org/10.1007/s12272-021-01307-9
- Swanson, K. V., Deng, M. and Ting, J. P. (2019) The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat. Rev. Immunol. 19, 477-489. https://doi.org/10.1038/s41577-019-0165-0
- Wang, W., Nguyen, L. T., Burlak, C., Chegini, F., Guo, F., Chataway, T., Ju, S., Fisher, O. S., Miller, D. W., Datta, D, Wu, F., Wu, C. X., Landeru, A., Wells, J. A., Cookson, M. R., Boxer, M. B., Thomas, C. J., Gai, W. P., Ringe, D., Petsko, G. A. and Hoang, Q. Q. (2016) Caspase-1 causes truncation and aggregation of the Parkinson's disease-associated protein α-synuclein. Proc. Natl. Acad. Sci. U.S.A. 113, 9587-9592. https://doi.org/10.1073/pnas.1610099113
- Wen, A. Y., Sakamoto, K. M. and Miller, L. S. (2010) The role of the transcription factor CREB in immune function. J. Immunol. 185, 6413-6419. https://doi.org/10.4049/jimmunol.1001829
- Wilson, L. S. and Brandon, N. J. (2015) Emerging biology of PDE10A. Curr. Pharm. Des. 21, 378-388. https://doi.org/10.2174/1381612820666140826114744
- Yan, Y., Jiang, W., Liu, L., Wang, X., Ding, C., Tian, Z. and Zhou, R. (2015) Dopamine controls systemic inflammation through inhibition of NLRP3 inflammasome. Cell 160, 62-73. https://doi.org/10.1016/j.cell.2014.11.047
- Zagorska, A., Partyka, A., Bucki, A., Gawalskax, A., Czopek, A. and Pawlowski, M. (2018) Phosphodiesterase 10 inhibitors - novel perspectives for psychiatric and neurodegenerative drug discovery. Curr. Med. Chem. 25, 3455-3481. https://doi.org/10.2174/0929867325666180309110629
- Zhu, W., Liu, S., Zhao, J., Liu, S., Jiang, S., Li, B., Yang, H., Fan, C. and Cui, W. (2014) Highly flexible and rapidly degradable papaverineloaded electrospun fibrous membranes for preventing vasospasm and repairing vascular tissue. Acta Biomater. 10, 3018-3028. https://doi.org/10.1016/j.actbio.2014.03.023
Cited by
- Mining Anti-Inflammation Molecules From Nippostrongylus brasiliensis-Derived Products Through the Metabolomics Approach vol.11, 2021, https://doi.org/10.3389/fcimb.2021.781132