DOI QR코드

DOI QR Code

Efficient Generation of Dopaminergic Neurons from Mouse Ventral Midbrain Astrocytes

  • Jin Yi Han (Graduate School of Biomedical Science and Engineering, Hanyang University) ;
  • Eun-Hye Lee (Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine) ;
  • Sang-Mi Kim (Hanyang Biomedical Research Institute, Hanyang University) ;
  • Chang-Hwan Park (Graduate School of Biomedical Science and Engineering, Hanyang University)
  • Received : 2022.11.05
  • Accepted : 2022.12.13
  • Published : 2023.05.01

Abstract

Parkinson's disease (PD) is a common neurodegenerative disorder characterized by tremors, bradykinesia, and rigidity. PD is caused by loss of dopaminergic (DA) neurons in the midbrain substantia nigra (SN) and therefore, replenishment of DA neurons via stem cell-based therapy is a potential treatment option. Astrocytes are the most abundant non-neuronal cells in the central nervous system and are promising candidates for reprogramming into neuronal cells because they share a common origin with neurons. The ability of neural progenitor cells (NPCs) to proliferate and differentiate may overcome the limitations of the reduced viability and function of transplanted cells after cell replacement therapy. Achaete-scute complex homolog-like 1 (Ascl1) is a well-known neuronal-specific factor that induces various cell types such as human and mouse astrocytes and fibroblasts to differentiate into neurons. Nurr1 is involved in the differentiation and maintenance of DA neurons, and decreased Nurr1 expression is known to be a major risk factor for PD. Previous studies have shown that direct conversion of astrocytes into DA neurons and NPCs can be induced by overexpression of Ascl1 and Nurr1 and additional transcription factors genes such as superoxide dismutase 1 and SRY-box 2. Here, we demonstrate that astrocytes isolated from the ventral midbrain, the origin of SN DA neurons, can be effectively converted into DA neurons and NPCs with enhanced viability. In addition, when these NPCs are inducted to differentiate, they exhibit key characteristics of DA neurons. Thus, direct conversion of midbrain astrocytes is a possible cell therapy strategy to treat neurodegenerative diseases.

Keywords

Acknowledgement

This research was supported by a grant from the Individual Basic Science and Engineering Research Program (2019R1A2C2005681) of the National Research Foundation funded by the Ministry of Science and ICT in Korea.

References

  1. Ali, F. R., Cheng, K., Kirwan, P., Metcalfe, S., Livesey, F. J., Barker, R. A. and Philpott, A. (2014) The phosphorylation status of Ascl1 is a key determinant of neuronal differentiation and maturation in vivo and in vitro. Development 141, 2216-2224.  https://doi.org/10.1242/dev.106377
  2. Caiazzo, M., Dell'Anno, M. T., Dvoretskova, E., Lazarevic, D., Taverna, S., Leo, D., Sotnikova, T. D., Menegon, A., Roncaglia, P., Colciago, G., Russo, G., Carninci, P., Pezzoli, G., Gainetdinov, R. R., Gustincich, S., Dityatev, A. and Broccoli, V. (2011) Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature 476, 224-227.  https://doi.org/10.1038/nature10284
  3. Castro, D. S., Martynoga, B., Parras, C., Ramesh, V., Pacary, E., Johnston, C., Drechsel, D., Lebel-Potter, M., Garcia, L. G., Hunt, C., Dolle, D., Bithell, A., Ettwiller, L., Buckley, N. and Guillemot, F. (2011) A novel function of the proneural factor Ascl1 in progenitor proliferation identified by genome-wide characterization of its targets. Genes Dev. 25, 930-945.  https://doi.org/10.1101/gad.627811
  4. Dias, V., Junn, E. and Mouradian, M. M. (2013) The role of oxidative stress in Parkinson's disease. J. Parkinsons Dis. 3, 461-491.  https://doi.org/10.3233/JPD-130230
  5. Elkabetz, Y., Panagiotakos, G., Al Shamy, G., Socci, N. D., Tabar, V. and Studer, L. (2008) Human ES cell-derived neural rosettes reveal a functionally distinct early neural stem cell stage. Genes Dev. 22, 152-165.  https://doi.org/10.1101/gad.1616208
  6. Forget, A., Bihannic, L., Cigna, S. M., Lefevre, C., Remke, M., Barnat, M., Dodier, S., Shirvani, H., Mercier, A., Mensah, A., Garcia, M., Humbert, S., Taylor, M. D., Lasorella, A. and Ayrault, O. (2014) Shh signaling protects Atoh1 from degradation mediated by the E3 ubiquitin ligase Huwe1 in neural precursors. Dev. Cell 29, 649-661.  https://doi.org/10.1016/j.devcel.2014.05.014
  7. Goldman, S. A. (2016) Stem and progenitor cell-based therapy of the central nervous system: hopes, hype, and wishful thinking. Cell Stem Cell 18, 174-188.  https://doi.org/10.1016/j.stem.2016.01.012
  8. Hegarty, S. V., Sullivan, A. M. and O'Keeffe, G. W. (2013) Midbrain dopaminergic neurons: a review of the molecular circuitry that regulates their development. Dev. Biol. 379, 123-138.  https://doi.org/10.1016/j.ydbio.2013.04.014
  9. Kim, J. Y., Koh, H. C., Lee, J. Y., Chang, M. Y., Kim, Y. C., Chung, H. Y., Son, H., Lee, Y. S., Studer, L., McKay, R. and Lee, S. H. (2003) Dopaminergic neuronal differentiation from rat embryonic neural precursors by Nurr1 overexpression. J. Neurochem. 85, 1443-1454.  https://doi.org/10.1046/j.1471-4159.2003.01780.x
  10. Ko, J. Y., Lee, J. Y., Park, C. H. and Lee, S. H. (2005) Effect of cell-density on in-vitro dopaminergic differentiation of mesencephalic precursor cells. Neuroreport 16, 499-503.  https://doi.org/10.1097/00001756-200504040-00016
  11. Lindvall, O. and Bjorklund, A. (2004) Cell therapy in Parkinson's disease. NeuroRx 1, 382-393. https://doi.org/10.1602/neurorx.1.4.382
  12. Liu, Y., Miao, Q., Yuan, J., Han, S., Zhang, P., Li, S., Rao, Z., Zhao, W., Ye, Q., Geng, J., Zhang, X. and Cheng, L. (2015) Ascl1 converts dorsal midbrain astrocytes into functional neurons in vivo. J. Neurosci. 35, 9336-9355.  https://doi.org/10.1523/JNEUROSCI.3975-14.2015
  13. Ma, K., Deng, X., Xia, X., Fan, Z., Qi, X., Wang, Y., Li, Y., Ma, Y., Chen, Q., Peng, H., Ding, J., Li, C., Huang, Y., Tian, C. and Zheng, J. C. (2018) Direct conversion of mouse astrocytes into neural progenitor cells and specific lineages of neurons. Transl. Neurodegener. 7, 29. 
  14. Park, C. H., Kang, J. S., Shin, Y. H., Chang, M. Y., Chung, S., Koh, H. C., Zhu, M. H., Oh, S. B., Lee, Y. S., Panagiotakos, G., Tabar, V., Studer, L. and Lee, S. H. (2006) Acquisition of in vitro and in vivo functionality of Nurr1-induced dopamine neurons. FASEB J. 20, 2553-2555.  https://doi.org/10.1096/fj.06-6159fje
  15. Phatnani, H. and Maniatis, T. (2015) Astrocytes in neurodegenerative disease. Cold Spring Harb. Perspect. Biol. 7, a020628. 
  16. Sohn, J. (2021) Efficient Neuronal Direct Conversion of Mouse Astrocytes by ASCL1 Dephosphorylation. Master of Science, dissertation. Hanyang University.
  17. Solari, C., Petrone, M. V., Vazquez Echegaray, C., Cosentino, M. S., Waisman, A., Francia, M., Baranao, L., Miriuka, S. and Guberman, A. (2018) Superoxide dismutase 1 expression is modulated by the core pluripotency transcription factors Oct4, Sox2 and Nanog in embryonic stem cells. Mech. Dev. 154, 116-121. https://doi.org/10.1016/j.mod.2018.06.004
  18. Sonntag, K. C., Song, B., Lee, N., Jung, J. H., Cha, Y., Leblanc, P., Neff, C., Kong, S. W., Carter, B. S., Schweitzer, J. and Kim, K. S. (2018) Pluripotent stem cell-based therapy for Parkinson's disease: current status and future prospects. Prog. Neurobiol. 168, 1-20.  https://doi.org/10.1016/j.pneurobio.2018.04.005
  19. Takahashi, K. and Yamanaka, S. (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663-676.  https://doi.org/10.1016/j.cell.2006.07.024
  20. Theka, I., Caiazzo, M., Dvoretskova, E., Leo, D., Ungaro, F., Curreli, S., Manago, F., Dell'Anno, M. T., Pezzoli, G., Gainetdinov, R. R., Dityatev, A. and Broccoli, V. (2013) Rapid generation of functional dopaminergic neurons from human induced pluripotent stem cells through a single-step procedure using cell lineage transcription factors. Stem Cells Transl. Med. 2, 473-479.  https://doi.org/10.5966/sctm.2012-0133
  21. Traxler, L., Edenhofer, F. and Mertens, J. (2019) Next-generation disease modeling with direct conversion: a new path to old neurons. FEBS Lett. 593, 3316-3337.  https://doi.org/10.1002/1873-3468.13678
  22. Tsang, C. K., Liu, Y., Thomas, J., Zhang, Y. and Zheng, X. F. (2014) Superoxide dismutase 1 act as a nuclear transcription factor to regulate oxidative stress resistance. Nat. Commun. 5, 3446. 
  23. Vierbuchen, T., Ostermeier, A., Pang, Z. P., Kokubu, Y., Sudhof, T. C. and Wernig, M. (2010) Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463, 1035-1041.  https://doi.org/10.1038/nature08797
  24. Wang, H., Yang, Y., Liu, J. and Qian, L. (2021a) Direct cell reprogramming: approaches, mechanisms and progress. Nat. Rev. Mol. Cell Biol. 22, 410-424.  https://doi.org/10.1038/s41580-021-00335-z
  25. Wang, Y., Zhang, X., Chen, F., Song, N. and Xie, J. (2021b) In vivo direct conversion of astrocytes to neuron maybe a potential alternative strategy for neurodegenerative diseases. Front. Aging Neurosci. 13, 689276. 
  26. Xu, Z., Chu, X., Jiang, H., Schilling, H., Chen, S. and Feng, J. (2017) Induced dopaminergic neurons: a new promise for Parkinson's disease. Redox Biol. 11, 606-612.  https://doi.org/10.1016/j.redox.2017.01.009
  27. Yang, N., Ng, Y. H., Pang, Z. P., Sudhof, T. C. and Wernig, M. (2011) Induced neuronal cells: how to make and define a neuron. Cell Stem Cell 9, 517-525.  https://doi.org/10.1016/j.stem.2011.11.015
  28. Zhang, S. and Cui, W. (2014) Sox2, a key factor in the regulation of pluripotency and neural differentiation. World J. Stem Cells 6, 305-311.  https://doi.org/10.4252/wjsc.v6.i3.305
  29. Zhou, S., Szczesna, K., Ochalek, A., Kobolak, J., Varga, E., Nemes, C., Chandrasekaran, A., Rasmussen, M., Cirera, S., Hyttel, P., Dinnyes, A., Freude, K. K. and Avci, H. X. (2016) Neurosphere based differentiation of human iPSC improves astrocyte differentiation. Stem Cells Int. 2016, 4937678.