Acknowledgement
This work was funded and supported by the Bio-Synergy Research Project (NRF-2012M3A9C4048793) of the Ministry of Science, ICT and Future Planning through the National Research Foundation of the Republic of Korea. This work was also supported by the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI) funded by the Ministry of Health & Welfare, Republic of Korea (Grant Number: HI18C1860), and by the Korea Institute of Science and Technology (KIST) Institutional Programs (Grant No. 2E31512).
References
- Aktan, F. (2004) iNOS-mediated nitric oxide production and its regulation. Life Sci. 75, 639-653. https://doi.org/10.1016/j.lfs.2003.10.042
- Arthur, J. S. C. and Ley, S. C. (2013) Mitogen-activated protein kinases in innate immunity. Nat. Rev. Immunol. 13, 679-692. https://doi.org/10.1038/nri3495
- Becher, B., Spath, S. and Goverman, J. (2017) Cytokine networks in neuroinflammation. Nat. Rev. Immunol. 17, 49-59. https://doi.org/10.1038/nri.2016.123
- Bin Jardan, Y. A., Ansari, M. A., Raish, M., Alkharfy, K. M., Ahad, A., Al-Jenoobi, F. I., Haq, N., Khan, M. R. and Ahmad, A. (2020) Sinapic acid ameliorates oxidative stress, inflammation, and apoptosis in acute doxorubicin-induced cardiotoxicity via the NF-kappaB-mediated pathway. Biomed Res. Int. 2020, 3921796.
- Calabrese, V., Mancuso, C., Calvani, M., Rizzarelli, E., Butterfield, D. A. and Stella, A. M. (2007) Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nat. Rev. Neurosci. 8, 766-775. https://doi.org/10.1038/nrn2214
- Chen, C. Y. (2016) Sinapic acid and its derivatives as medicine in oxidative stress-induced diseases and aging. Oxid. Med. Cell. Longev. 2016, 3571614.
- Chen, M. J., Ramesha, S., Weinstock, L. D., Gao, T., Ping, L., Xiao, H., Dammer, E. B., Duong, D. D., Levey, A. I. and Lah, J. J. (2019) Microglial ERK signaling is a critical regulator of pro-inflammatory immune responses in Alzheimer's disease. bioRxiv doi: 10.1101/798215.
- Cherry, J. D., Olschowka, J. A. and O'Banion, M. K. (2014) Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. J. Neuroinflammation 11, 98.
- Coeffier, M., Marion, R., Ducrotte, P. and Dechelotte, P. (2003) Modulating effect of glutamine on IL-1β-induced cytokine production by human gut. Clin. Nutr. 22, 407-413. https://doi.org/10.1016/S0261-5614(03)00040-2
- Galland, L. (2010) Diet and inflammation. Nutr. Clin. Pract. 25, 634-640. https://doi.org/10.1177/0884533610385703
- Hameed, H., Aydin, S. and Basaran, N. (2016) Sinapic acid: is it safe for humans? FABAD J. Pharm. Sci. 41, 39-49.
- Huang, J. F., Zheng, X. Q., Lin, J. L., Zhang, K., Tian, H. J., Zhou, W. X., Wang, H., Gao, Z., Jin, H. M. and Wu, A. M. (2020) Sinapic acid inhibits IL-1beta-induced apoptosis and catabolism in nucleus pulposus cells and ameliorates intervertebral disk degeneration. J. Inflamm. Res. 13, 883-895. https://doi.org/10.2147/JIR.S278556
- Huang, X., Pan, Q., Mao, Z., Zhang, R., Ma, X., Xi, Y. and You, H. (2018) Sinapic acid inhibits the IL-1β-induced inflammation via MAPK downregulation in rat chondrocytes. Inflammation 41, 562-568. https://doi.org/10.1007/s10753-017-0712-4
- Kim, E. K. and Choi, E. J. (2015) Compromised MAPK signaling in human diseases: an update. Arch. Toxicol. 89, 867-882. https://doi.org/10.1007/s00204-015-1472-2
- Krause, D. L. and Muller, N. (2010) Neuroinflammation, microglia and implications for anti-inflammatory treatment in Alzheimer's disease. Int. J. Alzheimers Dis. 2010, 732806.
- Lee, E. H., Shin, J. H., Kim, S. S. and Seo, S. R. (2021) Sinapic acid controls inflammation by suppressing nlrp3 inflammasome activation. Cells 10, 2327.
- Lee, J.-Y. (2018) Anti-inflammatory effects of sinapic acid on 2, 4, 6-trinitrobenzenesulfonic acid-induced colitis in mice. Arch. Pharm. Res. 41, 243-250. https://doi.org/10.1007/s12272-018-1006-6
- Leigh, S.-J. and Morris, M. J. (2020) Diet, inflammation and the gut microbiome: mechanisms for obesity-associated cognitive impairment. Biochim. Biophys. Acta Mol. Basis Dis. 1866, 165767.
- Maksoud, M. J. E., Tellios, V., An, D., Xiang, Y. Y. and Lu, W. Y. (2019) Nitric oxide upregulates microglia phagocytosis and increases transient receptor potential vanilloid type 2 channel expression on the plasma membrane. Glia 67, 2294-2311. https://doi.org/10.1002/glia.23685
- Margina, D., Ungurianu, A., Purdel, C., Tsoukalas, D., Sarandi, E., Thanasoula, M., Tekos, F., Mesnage, R., Kouretas, D. and Tsatsakis, A. (2020) Chronic inflammation in the context of everyday life: dietary changes as mitigating factors. Int. J. Environ. Res. Public Health 17, 4135.
- Nguyen, V. P. T., Stewart, J. D., Ioannou, I. and Allais, F. (2021) Sinapic acid and sinapate esters in Brassica: innate accumulation, biosynthesis, accessibility via chemical synthesis or recovery from biomass, and biological activities. Front. Chem. 9, 664602.
- Olszewska, M. A., Granica, S., Kolodziejczyk-Czepas, J., Magiera, A., Czerwinska, M. E., Nowak, P., Rutkowska, M., Wasinski, P. and Owczarek, A. (2020) Variability of sinapic acid derivatives during germination and their contribution to antioxidant and anti-inflammatory effects of broccoli sprouts on human plasma and human peripheral blood mononuclear cells. Food Funct. 11, 7231-7244. https://doi.org/10.1039/D0FO01387K
- Perry, V. H., Nicoll, J. A. and Holmes, C. (2010) Microglia in neurodegenerative disease. Nat. Rev. Neurol. 6, 193-201. https://doi.org/10.1038/nrneurol.2010.17
- Picon-Pages, P., Garcia-Buendia, J. and Munoz, F. J. (2019) Functions and dysfunctions of nitric oxide in brain. Biochim. Biophys. Acta Mol. Basis Dis. 1865, 1949-1967. https://doi.org/10.1016/j.bbadis.2018.11.007
- Rai, S. N., Dilnashin, H., Birla, H., Singh, S. S., Zahra, W., Rathore, A. S., Singh, B. K. and Singh, S. P. (2019) The role of PI3K/Akt and ERK in neurodegenerative disorders. Neurotox. Res. 35, 775-795. https://doi.org/10.1007/s12640-019-0003-y
- Saha, R. N. and Pahan, K. (2006) Regulation of inducible nitric oxide synthase gene in glial cells. Antioxid. redox Signal. 8, 929-947. https://doi.org/10.1089/ars.2006.8.929
- Singh, G., Kaur, A., Kaur, J., Bhatti, M. S., Singh, P. and Bhatti, R. (2019) Bergapten inhibits chemically induced nociceptive behavior and inflammation in mice by decreasing the expression of spinal PARP, iNOS, COX-2 and inflammatory cytokines. Inflammopharmacology 27, 749-760. https://doi.org/10.1007/s10787-019-00585-6
- Streit, W. J., Mrak, R. E. and Griffin, W. S. (2004) Microglia and neuroinflammation: a pathological perspective. J. Neuroinflammation 1, 14.
- Tang, F., Wang, Y., Hemmings, B. A., Ruegg, C. and Xue, G. (2018) PKB/Akt-dependent regulation of inflammation in cancer. Semin. Cancer Biol. 48, 62-69. https://doi.org/10.1016/j.semcancer.2017.04.018
- Verma, V., Singh, D. and Kh, R. (2020) Sinapic acid alleviates oxidative stress and neuro-inflammatory changes in sporadic model of Alzheimer's disease in rats. Brain Sci. 10, 923.
- West, P. K., Viengkhou, B., Campbell, I. L. and Hofer, M. J. (2019) Microglia responses to interleukin-6 and type I interferons in neuroinflammatory disease. Glia 67, 1821-1841. https://doi.org/10.1002/glia.23634
- Xiang, W., Zhang, G.-D., Li, F.-Y., Wang, T.-l., Suo, T.-C., Wang, C.- H., Li, Z. and Zhu, Y. (2019) Chemical constituents from the roots of polygala arillata and their anti-inflammatory activities. J. Chem. 2019, 8079619.
- Xue, Q., Yan, Y., Zhang, R. and Xiong, H. (2018) Regulation of iNOS on immune cells and its role in diseases. Int. J. Mol. Sci. 19, 3805.
- Zhang, D., Li, N., Wang, Y., Lu, W., Zhang, Y., Chen, Y., Deng, X. and Yu, X. (2019) Methane ameliorates post-operative cognitive dysfunction by inhibiting microglia NF-κB/MAPKs pathway and promoting IL-10 expression in aged mice. Int. Immunopharmacol. 71, 52-60. https://doi.org/10.1016/j.intimp.2019.03.003
- Zhang, W. and Liu, H. T. (2002) MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res. 12, 9-18. https://doi.org/10.1038/sj.cr.7290105
- Zhang, X., Li, N., Shao, H., Meng, Y., Wang, L., Wu, Q., Yao, Y., Li, J., Bian, J., Zhang, Y. and Deng, X. (2016) Methane limit LPS-induced NF-κB/MAPKs signal in macrophages and suppress immune response in mice by enhancing PI3K/AKT/GSK-3β-mediated IL-10 expression. Sci. Rep. 6, 29359.
- Zhao, D., Gu, M. Y., Zhang, L. J., Jeon, H. J., Cho, Y. B. and Yang, H. O. (2019) 7-Deoxy-trans-dihydronarciclasine isolated from lycoris chejuensis inhibits neuroinflammation in experimental models. J. Agric. Food Chem. 67, 9796-9804. https://doi.org/10.1021/acs.jafc.9b03307
- Zhao, D., Zhang, L. J., Huang, T. Q., Kim, J., Gu, M. Y. and Yang, H. O. (2021) Narciclasine inhibits LPS-induced neuroinflammation by modulating the Akt/IKK/NF-kappaB and JNK signaling pathways. Phytomedicine 85, 153540.
- Zhu, L., Yang, H., Chao, Y., Gu, Y., Zhang, J., Wang, F., Yu, W., Ye, P., Chu, P., Kong, X. and Chen, S. (2021) Akt phosphorylation regulated by IKKepsilon in response to low shear stress leads to endothelial inflammation via activating IRF3. Cell. Signal. 80, 109900.