• Title/Summary/Keyword: Dixon's theorem

Search Result 19, Processing Time 0.027 seconds

ANOTHER PROOF OF CLASSICAL DIXON'S SUMMATION THEOREM FOR THE SERIES 3F2

  • Kim, Insuk;Cho, Myunghyun
    • Honam Mathematical Journal
    • /
    • v.41 no.3
    • /
    • pp.661-666
    • /
    • 2019
  • In this short research note, we aim to provide a new proof of classical Dixon's summation theorem for the series $_3F_2$ with unit argument. The theorem is obtained by evaluating an infinite integral and making use of classical Gauss's and Kummer's summation theorem for the series $_2F_1$.

ALTERNATIVE DERIVATIONS OF CERTAIN SUMMATION FORMULAS CONTIGUOUS TO DIXON'S SUMMATION THEOREM FOR A HYPERGEOMETRIC $_3F_2$ SERIES

  • Choi, June-Sang;Rathie Arjun K.;Malani Shaloo;Mathur Rachana
    • The Pure and Applied Mathematics
    • /
    • v.13 no.4 s.34
    • /
    • pp.255-259
    • /
    • 2006
  • In 1994, Lavoie et al. have obtained twenty tree interesting results closely related to the classical Dixon's theorem on the sum of a $_3F_2$ by making a systematic use of some known relations among contiguous functions. We aim at showing that these results can be derived by using the same technique developed by Bailey with the help of Gauss's summation theorem and generalized Kummer's theorem obtained by Lavoie et al..

  • PDF

Generalizations of Dixon's and Whipple's Theorems on the Sum of a 3F2

  • Choi, Junesang;Malani, Shaloo;Rathie, Arjun K.
    • Kyungpook Mathematical Journal
    • /
    • v.47 no.3
    • /
    • pp.449-454
    • /
    • 2007
  • InIn this paper we consider generalizations of the classical Dixon's theorem and the classical Whipple's theorem on the sum of a $_3F_2$. The results are derived with the help of generalized Watson's theorem obtained earlier by Mitra. A large number of results contiguous to Dixon's and Whipple's theorems obtained earlier by Lavoie, Grondin and Rathie, and Lavoie, Grondin, Rathie and Arora follow special cases of our main findings.

  • PDF

A GENERALIZATION OF PREECE`S IDENTITY

  • Kim, Yong-Sup;Arjun K.Rathie
    • Communications of the Korean Mathematical Society
    • /
    • v.14 no.1
    • /
    • pp.217-222
    • /
    • 1999
  • The aim of this research is to provide a generalization of the well-known, interesting and useful identity due to Preece by using classical Dixon`s theorem on a sum of \ulcornerF\ulcorner.

  • PDF

APPLICATIONS OF GENERALIZED KUMMER'S SUMMATION THEOREM FOR THE SERIES 2F1

  • Kim, Yong-Sup;Rathie, Arjun K.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.6
    • /
    • pp.1201-1211
    • /
    • 2009
  • The aim of this research paper is to establish generalizations of classical Dixon's theorem for the series $_3F_2$, a result due to Bailey involving product of generalized hypergeometric series and certain very interesting summations due to Ramanujan. The results are derived with the help of generalized Kummer's summation theorem for the series $_2F_1$ obtained earlier by Lavoie, Grondin, and Rathie.

AN EXTENSION OF THE TRIPLE HYPERGEOMETRIC SERIES BY EXTON

  • Lee, Seung-Woo;Kim, Yong-Sup
    • Honam Mathematical Journal
    • /
    • v.32 no.1
    • /
    • pp.61-71
    • /
    • 2010
  • The aim of this paper is to extend a number of transformation formulas for the four $X_4$, $X_5$, $X_7$, and $X_8$ among twenty triple hypergeometric series $X_1$ to $X_{20}$ introduced earlier by Exton. The results are derived from the generalized Kummer's theorem and Dixon's theorem obtained earlier by Lavoie et al..

SUMMATION FORMULAS DERIVED FROM THE SRIVASTAVA'S TRIPLE HYPERGEOMETRIC SERIES HC

  • Kim, Yong-Sup;Rathie, Arjun Kumar;Choi, June-Sang
    • Communications of the Korean Mathematical Society
    • /
    • v.25 no.2
    • /
    • pp.185-191
    • /
    • 2010
  • Srivastava noticed the existence of three additional complete triple hypergeometric functions $H_A$, $H_B$ and $H_C$ of the second order in the course of an extensive investigation of Lauricella's fourteen hypergeometric functions of three variables. In 2004, Rathie and Kim obtained four summation formulas containing a large number of very interesting reducible cases of Srivastava's triple hypergeometric series $H_A$ and $H_C$. Here we are also aiming at presenting two unified summation formulas (actually, including 62 ones) for some reducible cases of Srivastava's $H_C$ with the help of generalized Dixon's theorem and generalized Whipple's theorem on the sum of a $_3F_2$ obtained earlier by Lavoie et al.. Some special cases of our results are also considered.

CERTAIN SUMMATION FORMULAS DUE TO RAMANUJAN AND THEIR GENERALIZATIONS

  • RATHIE ARJUN K.;MALANI SHALOO;MATHUR RACHANA;CHOI JUNESANG
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.3
    • /
    • pp.469-475
    • /
    • 2005
  • The authors aim at deriving four generalized summation formulas, which, upon specializing their parameters, give many summation identities including, especially, the four very interesting summation formulas due to Ramanujan. The results are derived with the help of generalized Dixon's theorem obtained earlier by Lavoie, Grondin, Rathie, and Arora.

GENERALIZATIONS OF CERTAIN SUMMATION FORMULA DUE TO RAMANUJAN

  • Song, Hyeong-Kee;Kim, Yong-Sup
    • Honam Mathematical Journal
    • /
    • v.34 no.1
    • /
    • pp.35-44
    • /
    • 2012
  • Motivated by the extension of classical Dixon's summation theorem for the series $_3F_2$ given by Lavoie, Grondin, Rathie and Arora, the authors aim at deriving four generalized summation formulas, which, upon specializing their parameters, give many summation identities including, especially, the four very interesting summation formulas due to Ramanujan.

ANOTHER GENERALIZATION OF A RAMANUJAN SUMMATION

  • Lee, Seung Woo;Lee, Chang Hyun;Kim, Yong Sup
    • Honam Mathematical Journal
    • /
    • v.35 no.1
    • /
    • pp.83-92
    • /
    • 2013
  • The aim of this research paper is to provide certain generalizations of two well-known summations due to Ramanujan. The results are derived with the help of the generalized Dixon's theorem on the sum of $_3F_2$ and the generalized Kummer's theorem for $_2F_1$ obtained earlier by Lavoie et al. [3, 5]. As their special cases, we have obtained fifteen interesting summations which are closely related to Ramanujan's summation.