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APPLICATIONS OF GENERALIZED KUMMER'’S
SUMMATION THEOREM FOR THE SERIES F;

YonGg Sup Kim AND ARJUN K. RATHIE

ABSTRACT. The aim of this research paper is to establish generalizations
of classical Dixon’s theorem for the series 3F», a result due to Bailey
involving product of generalized hypergeometric series and certain very
interesting summations due to Ramanujan. The results are derived with
the help of generalized Kummer’s summation theorem for the series o F}
obtained earlier by Lavoie, Grondin, and Rathie.

1. Introduction
The generalized hypergeometric functions with p numerator and ¢ denomi-
nator parameters is defined by [7]

al,...,

qu{@ p;Z]qu[al,m,Oép; B Bqi 2]
sy g
(1.1)

where (a), denotes the Pochhammer symbol (or the shifted factorial, since
(1), = n!) defined for any complex number « by

(1.2) (a)n:{ clx,(a+1)...(a+n—1), g Zi%{:{m,...}

using the fundamental relation T'(a + 1) = al'(«), (a), can be written in the
form

T(a+n)
I'(«)

where I' is the well-known Gamma function.

(1.3) () = (n e NU{0}),
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It is well-known that whenever a generalized hypergeometric function re-
duces to the Gamma function, the results are very important from the appli-
cation point of view. We mention here some of special cases of (1.1).

Gauss’s summation theorem [3]:

a, b 1 T(c)T(c—a—b)
. A [ )= R e
provided R(¢c —a —b) > 0.

Kummer’s summation theorem [3]:
a, b . B L()T(1+a—b)
l+a—-b" | 20T(la+ D1+ 3a—-0b)

(1.5) o Fy [

Dixon’s summation theorem [3]:
a, b, c
3F% [ 1+a-—0, 1+a—c;1}
M1+ ial(14+a-bT(1+a—c)l(1+ia—b—c)

S TA+al(l+3a-bI(1+ia—eT(1+a—b—c)

(1.6)

provided R(a — 2b — 2¢) > —2.
On the other hand, an interesting result due to Bailey [2] involving product
of generalized hypergeometric series is

_ _ -2
(1.7) o [ ; $] X oF [ ; —l’] =ol3 1 1 1; ——
p P PP 5Pt 5 4

The followings are the summations due to Ramanujan [4]:

2 D382 1y 2 T
s 1= () + (5) e e () -

and for R(z) >0
(1.9)
(-1  (z=1)(= -2 n

ey T e nery T Y

In the theory of generalized hypergeometric series, classical summation the-
orems for the series o F, 3F5, 4 F3 and 5F, play an important role. The Dixon’s
theorem (1.6) can be obtained with the help of Gauss’s summation theorem
(1.4) and Kummer’s summation theorem (1.5). Bailey [2] derived the result
(1.7) by utilizing Kummer’s summation theorem (1.7). Berndt [4] pointed out
that the summation (1.8) and (1.9) due to Ramanujan can be obtained quite
simply from Kummer’s theorem (1.5) by takinga = b = % anda=1,b=1—x,
respectively.

(=w)n 2@+ 1)
(z+1), - T2z +1)
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In 1996, Grodin and Rathie [6] generalized the Kummer’s theorem (1.5) in
the form
(1.10)

F 0 1
> [1+a—b+i’

(A +a—b+i)l(1—b)
o 29D(1 = b+ (i + i)

A; B;
X N 7 . + . 7 i
{F(éa +3i+ i[O +4ia—b+3i) TGa+3i—[L)T(GE+3a—b+3) }
for i = 0, +1, 42, £3, 44, £5.
As usual, [z] denotes the greatest integer less than or equal to x and its
modulus is denoted by |z|. The coefficients A; and B; are given respectively in

[6, p. 298]. The paper is organized as follows. In Section 2, explicit expression
for the series

a, b, ¢ )
1+a—b+i,1+a—c’}

3Fy [

for ¢ = 0,£1,+£2,4+3,£4,+5 are given. The results will be derived with the
help of generalized Kummer’s theorem (1.10) and Gauss’s theorem (1.4). As
an applications generalizations of certain summations due to Ramanujan are
also given. In Section 3, single series expressions of

B x| xoR | -
01{[)!17] 01[p+2 I}

for i = 0,4+1,42,43,+4,+5 are given. As special cases, some interesting
results are also mentioned. In Section 4, summations for the series

N2 11 1-3\2 1 1 W ()3
1’(5) (1+z’)i+<ﬁ) (1+i)(2+i)57m+(71) n!2(1+2i)n+"'

and for R(z) >0

(z—-1) (z—1)(z—2)
(x+1+4) (z+14+i)(z+2+1)

+ ”_’_(_1)”7(1—‘%)” R

1+ -
(x+1+1),

each for i = 0,1,2,3,4,5 are given. The results given in Sections 3 and 4 are
derived with the help of generalized Kummer’s theorem (1.10).

2. Generalization of Dixon’s theorem

In this section, the result to be proved is given in the following theorem.
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Theorem 1. For R(a — 2b — 2¢c+ 1) > —2, we have
3P “ o 1
{lﬁ—a—b—kz l4a—c’ ]

:F(%)I‘(l—b)f‘(1+a—b+z i La+ D)mb— 3G +1i])m
D(1—b+ 1(i+]i]) (I+a—0)m

m=0

/

A
X . . i . i
{F(éa —b+gi+ D(za+ 5+ 50— [FD(Ga+ 5+ 50— [ Dm

B,
P(za—b+3i+3)0Ga+3i—[E)Ga+3 [;]>m}

fori=0,£1,4£2 43, +4,+5. The coefficients AZ- and Bi can be obtained from
the tables of A; and B; by changing a by a+ 2m and b by b+ m respectively in
[6, p. 298].

Proof. Denoting the left-hand side by £, we have
a, b, c ]

=3F i1
L=s 2{1+ab+i,1+ac’

Expressing as a series,
[ i (@) (0)k(c)k
P (I4+a—b+)r(1+a—c)k!”
We can write this in the form
_ i (@)k (D) (=D* ()
= (lta—bti)k(-1)ek! | (1+a—c) '
Using a result [7, p. 69, Ex. 5]

-n, a+n 1 (=1)"(1+a—b),
y |

oy {

k(b)k —k, a+k
L= Z +a—b+z)( 1)’“1{:!2F1[ 1—|—a—c’1

Expressing o F} as a series, we have, after a little simplification

)k(*k)m(a + k)m
L= Z Z 1+a—b+z)kk'(1+a—c)mm!'

k=0 m=0

Using the following identities
(@)k(a+F)m = (@)ksm,

(2.1) (=)™
(_k)m - (k — m)"
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we have

m (D) (=1
L= ZZ 1—|—a—b+lz€)+(1+a—c)mm!(k—m)!'

k=0 m=0
Using a known result [7, p. 57, Eq. (2)]

SN Bkn)=>"Y B(k,n+k),

n=0 k=0 n=0 k=0

we have

r— ZZ k+2m(b)k+m( 1)k
== 1+a—b+z)k+m(1+a—c)mm'k'

Using the identities

(@)k+2m = (a)2m(a + 2m),

22 Bt = B b+ m)
we have
(@)2m (b)m (a+2m)p(b+m)p(=1)*
L= Z (A+a=b+i)m(l+a—c)mm! & Z (I1+a—b+i+m)k!

m=0

Summing up the inner series, we get

(@)2m (D) m a+2m, b+m
L= F; . ;—
Z I+a—b+i)m(l+a—c)mm!> | 14+a—b+i+m

It is now easy to see that the 5F} can be summed up by the known result
(1.10) and after a little algebra, we easily arrive at the right-hand side of the
Theorem 1. This completes the proof of the Theorem 1. (I

Corollary 2. (1) In Theorem 1, if we put i = 0, we get after a little simplifi-
cation, the classical Dizon’s theorem (1.6).
(2) In Theorem 1, if we put i = 1, we get, after some simplification, the
following summation formula
(2.3)
) b’ &

3F2{ 24a—b, 1+a—c;1
2724+ a—-b)I(1+a—c)
b—1D(a—2b+2)T(a—b—c+2)
X{F(Zab+3/2) (1 afbfc+2)+l“(2afb+l) ( abc+3/2)}
Fa+HI(Fa—c+1) Fta)f(ta—c+3)

provided R(a — 2b — 2¢) > 1.

a

Similarly, other results can also be obtained.
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3. Generalization of Bailey’s formula

In this section, the result to be proved involving product of generalized
hypergeometric series is given in the following theorem.

Theorem 3.

F; 7; X oF' =
01{{)‘%] Ol[p—&—z 4

F(Q)F(p)F p+i) i (—1)™(x)?m
,D % Z+| | m—0 % m22mm' 2p+ 4('L+| |))m(2p+4(l+| |) Z)m
Az (5 71_" [LH])m
%hl-[%b (p+ 3)m
N (1— 51 + [

r(l)F(p) p+z &

+ 3 )m($)2m+l

S D2 G+ 5+ 5 D)o+ 1+ 3G+ i)

=
—
+
b
E
M
\ w
0

+ - -
F(p + 7Z)F(2Z - % - [%D (P + %Z)m
fori=0,£1,+£2 +3,+4, +5.

The coefficients Ail and Bi/ can be obtained from the table of A; and B; by

changing a by —2m and b by 1 — p — 2m and the coefficients Ai” and BZ-” can
be obtained from the table of A; and B; by changing a by —2m — 1 and b by
—p — 2m respectively in [6, p. 298].

Proof. Denoting the left-hand side by S, we have

S :=oF 7; F; o=z .
’ 1{0 x}xo 1[p+z 4

Expressing both ¢ F} as series, we have

S = Z Z mern7

In!
o 0 p—l—z min!

which, by virtue of the following well-known result 7, p. 56, Eq. (1)]

o0 n

SN Bkn)=> Y B(k,n—k

n=0 k=0 n=0 k=0
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yields

§= Z Z P)m—n(p+i)n(m—mn)n!’

mOnO

Indeed, using the result (2.1) and after a little simplification, we get

n(l— m "
S — Z mmlz p_:’l)n .) n(=1) )

Summing up the inner series, we have
-m, 1l—p—m
= Z 21 , =1
m! p+i
Separating even and odd powers of , we have on using elementary identities [5]
1 1 1

m = 22m (> m\ o 5/ms
(a)2 (2a) (2a+ 2)
1 1
m = 22m o 1)m,
(3.1) (@)2mi1 =a ( F)m(za+1)
1
(2m)! = 2°"m (5)ms
2m+1)! = 22mm!(3/2)m,
e 2m _2m7 1_p_2m
S = 21 [ ) ;—1}
mz::o24m 2p)7n(2p+ 2) L(l)mm! pte
e p2mtl —9m—1, —p—2m
+ F ] 1
r;::0924"’/(%p+%)m(éer1),71(3/2),”,1!2 ' { p+i }

Finally using generalized Kummer’s summation formula in each oF; and
after much simplification, we arrive at the right-hand side of the Theorem 3.
This completes the proof of Theorem 3. (]

Corollary 4. We give some explicit special cases of Theorem 3.
Fori=20

(3.2) ol { ;33} X oF { ; —x} = ok} 1 1 1; —%
Fori=1
(3.3)

0F1[ p;ff] x oFy [p—kl;_x}

g2 x x
= ol3 1 11 ;—— | + of3 1 1 3, ——
pogpt g getl APt DT prl Skl Spts 4
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Fori=-1
(3.4)
0F1{7§37}><0F1[ 77*30}
p—1
T2 " - 2
R P P el TS Lkl I PO = L
p=1 5P 5P+ 3 P 5Pt 5 5P
Fori=2
(3.5)
Rl 2| xoF L
0 1{ p,x} 0 1{p+2’ 95]
- 2 20 - 2
= oF3 1 3;—— | + of3 35 ——
—p+1, —p+- 4 +2 1. Zp+2 Zp4+ 2
5P+ 1 Spt g p(p+2) Pl Gpt2 5ot
Fori= -2
(3.6)
0F1[_;96}><0F1{ _, l}
p p—2
- 2 20 - 2
= of3 1 15— — olF3 1 ;——
- 4 —2 R 4
p=1 5P 5pt g plp—2) p=1 gpt5 oo+l
Fori=3
(3.7)
F | x| xoF .
0 1[ P x} 0 1[,04-3 x}
- x? 3x x?
= of3 1 1 3;—— | + ——v0f3 1 1 5; ——
1, - 2, - = 4 +3 2, = 2. = 2
pLl 5p+2 ooty plp+3) P2 St Spt
n 222 I ) ) ; 22
Ao+ D +3)p+ 4" | p+2, 2p+3, Zp+3 4
207 F: 1 1 ; o
plp+D)(p+2)(p+3)(p+H(p+5" " | p+3, 5P+3 5pt s
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B x? 3x B 22
0F3[ 21 1+1;—Z—m0F3 11+11+1;_X
P s 2P7 2P 2 P s 2P ) 2p 9

-
+ oF3 1 1 35 ——
plp+1)(p—2)(p—3) [p—l, FP+ L 5pt s 4]

273 - 2
- F: 1 1 35 .
o+ Do +2) 0~ Dip-2(p-3)"" [p, 5P+2 5pt 3 4]

The result (3.2) is due to Bailey [2] and the results (3.3) to (3.8) are closely
related to Bailey’s result.

4. Generalizations of the summations due to Ramanujan

In this section, generalizations of the summations due to Ramanujan are
given in the following theorem.

Theorem 5.
2 2 1y (1
1 1 1 1- 1 1 5)n(5)n
1—( = R 73 %i_..._k(_l)”w_k...
2/ 1441 2- I+9)(2+1) 2! nl(1+1d),

_ wT(1+i) { C; . D; }
VRT(5+4) | TG+ 300G + 50— [1F]) TG+ 3005 + 50— [5])

fori=0,1,2,3,4,5.

The coefficients C; and D; can be obtained from the table of A; and B; by
putting a = b = % in [6, p. 298].

Theorem 6. For R(z) >0

(z—1) (z—1)(z—2) n (1—2)n
(x4 141) ($+1—|-i)(x+2+i)+ +(=1) (x4+1+1i),
_ Vr(z+ i)l (z) E; n F;
2 Fr+i+300(1+3i— 1) D+ i)TE +Li—[2)

fori=0,1,2,3,4,5.

The coefficients F; and F; can be obtained from the table of A; and B; by
putting a =1 and b = 1 — x respectively in [6].
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Proof. The proof of the Theorems 5 and 6 are straight forward. It is easy to
see that the left-hand side expression of the Theorem 5 corresponds to

1 1
2F1 27 2,—1
141

which is seen to be the special case of generalized Kummer’s theorem (1.10),
so it can easily be evaluated by (1.10) and we get the right-hand side of the
Theorem 5. Similarly, it is easy to see that the left-hand side expression of the

Theorem 6 corresponds to
P 1, 11—z )
>t [1+x+z’ T ]

which is also seen to be the special case of (1.10) and so it can easily be
evaluated by (1.10) and we get the right-hand side of the Theorem 6. O

Corollary 7. If in our Theorem 5, we take i = 0,1,2, we get the following
summations.

(1) 1- (;)2 + (;i)Q L \/511\2(273/4).
. 1_% (;)}; @i)z T m@;) - 2&:;/23/4).
613 (;) = (;j) o 9£ﬁ> . 16@32/23/4)

Similarly, other results can be obtained from our Theorem 5.

Corollary 8. If in our Theorem 6, we take i = 0,1,2, we get the following
summations.

(@=1) | (@=1)(@=2) | . _ TE/2T(z+1)
W I+t emer T = " Teeh
(z=1) | (z=1)(z=2) -
() 1+ gy + Groyary T = (@ F 1>F(m)r(3/2){r<ri;> ~ VAT }
(z-1) | (e=1)(z—2) _ (z42) (Ba+4)
B) 1+ G + ormern = @+ 2)F(z)F(3/2>{ Tetd) ~ Yl (@t2) }
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