ANOTHER PROOF OF CLASSICAL DIXON'S SUMMATION THEOREM FOR THE SERIES ${ }_{3} F_{2}$

Insuk Kim and Myunghyun Cho*

Abstract

In this short research note, we aim to provide a new proof of classical Dixon's summation theorem for the series ${ }_{3} F_{2}$ with unit argument. The theorem is obtained by evaluating an infinite integral and making use of classical Gauss's and Kummer's summation theorem for the series ${ }_{2} F_{1}$.

1. Introduction

It is well known that in the theory of generalized hypergeometric series, classical Dixon's summation theorem for the series ${ }_{3} F_{2}$ [2, 4, 5] viz.

$$
\begin{align*}
& { }_{3} F_{2}\left[\begin{array}{c}
a, \quad b, \quad c \\
1+a-b, 1+a-c
\end{array}\right] \tag{1}\\
& =\frac{\Gamma\left(1+\frac{1}{2} a\right) \Gamma(1+a-b) \Gamma(1+a-c) \Gamma\left(1+\frac{1}{2} a-b-c\right)}{\Gamma(1+a) \Gamma\left(1+\frac{1}{2} a-b\right) \Gamma\left(1+\frac{1}{2} a-c\right) \Gamma(1+a-b-c)}
\end{align*}
$$

provided $\operatorname{Re}(a-2 b-2 c)>-2$, play a key role.
In a very well known, useful, interesting and popular research paper, Bailey [1] obtained a large number of very interesting results involving products of generalized hypergeometric functions by employing classical Dixon's summation theorem (1).

As pointed out by Berndt [3] that the following very interesting summations due to Ramanujan viz.

[^0]\[

$$
\begin{equation*}
1+\frac{1}{5^{2}}\left(\frac{1}{2}\right)+\frac{1}{9^{2}}\left(\frac{1 \cdot 3}{2 \cdot 4}\right)+\cdots=\frac{\pi^{5 / 2}}{8 \sqrt{2} \Gamma^{2}(3 / 4)}, \tag{2}
\end{equation*}
$$

\]

$$
\begin{equation*}
1+\left(\frac{1}{2}\right)^{3}+\left(\frac{1 \cdot 3}{2 \cdot 4}\right)^{3}+\cdots=\frac{\pi}{\Gamma^{4}(3 / 4)} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
1+\frac{1}{5}\left(\frac{1}{2}\right)^{2}+\frac{1}{9}\left(\frac{1 \cdot 3}{2 \cdot 4}\right)^{2}+\cdots=\frac{\pi^{2}}{4 \Gamma^{4}(3 / 4)} \tag{4}
\end{equation*}
$$

can be obtained very quickly by employing classical Dixon's summation theorem (1) by taking (i) $a=\frac{1}{2}, b=c=\frac{1}{4}$, (ii) $a=b=c=\frac{1}{2}$ and (iii) $a=b=\frac{1}{2}, c=\frac{1}{4}$, respectively.

In the standard text of Bailey [1], classical Dixon's summation theorem have been established with the help of the following classical Gauss's summation theorem (5) viz.

$$
{ }_{2} F_{1}\left[\begin{array}{c}
a, \tag{5}\\
c
\end{array} \quad ; 1\right]=\frac{\Gamma(c) \Gamma(c-a-b)}{\Gamma(c-a) \Gamma(c-b)},
$$

provided $\operatorname{Re}(c-a-b)>0$, and the following Kummer's summation theorem [5] viz.

$$
{ }_{2} F_{1}\left[\begin{array}{c}
a, \quad b \tag{6}\\
1+a-b^{\prime}
\end{array}-1\right]=\frac{\Gamma\left(1+\frac{1}{2} a\right) \Gamma(1+a-b)}{\Gamma(1+a) \Gamma\left(1+\frac{1}{2} a-b\right)} .
$$

In our present investigation, we aim to provide a new proof of classical Dixon's summation theorem (1) by evaluating an infinite integral. For this, we need the following result, which is a special case of Gauss's summation theorem (5) viz.

$$
{ }_{2} F_{1}\left[\begin{array}{cc}
-k, & a+k \tag{7}\\
1+a-c
\end{array} ; 1\right]=\frac{(-1)^{k}(c)_{k}}{(1+a-c)_{k}} .
$$

2. New proof of Dixon's summation theorem (1)

In order to derive the result (1), we proceed as follows. Consider the following integral

$$
I=\int_{0}^{\infty} e^{-t} t^{d-1}{ }_{3} F_{3}\left[\begin{array}{cc}
a, & b, \\
d, 1+a-b, & c \\
1+a-c
\end{array} ; t\right] d t .
$$

for $\operatorname{Re}(d)>0$.
Expressing the generalized hypergeometric function ${ }_{3} F_{3}$ in series, we have

$$
I=\int_{0}^{\infty} e^{-t} t^{d-1} \sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}(c)_{n} t^{n}}{(d)_{n}(1+a-b)_{n}(1+a-c)_{n} n!} d t .
$$

Changing the order of integration and summation, which is permitted due to the uniform convergence of the series, we have

$$
I=\sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}(c)_{n}}{(d)_{n}(1+a-b)_{n}(1+a-c)_{n} n!} \int_{0}^{\infty} e^{-t} t^{d+n-1} d t .
$$

Evaluating the well known gamma integral and making use of the relation of following Pochhammer symbol with gamma function

$$
(a)_{n}=\frac{\Gamma(a+n)}{\Gamma(a)},
$$

we have, after some simplification

$$
\begin{equation*}
I=\Gamma(d) \sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}(c)_{n}}{(1+a-b)_{n}(1+a-c)_{n} n!} . \tag{8}
\end{equation*}
$$

Finally, summing up the series, we have

$$
I=\Gamma(d){ }_{3} F_{2}\left[\begin{array}{c}
a, \quad b, \tag{9}\\
1+a-b, \\
c^{c} \\
1+a-c
\end{array} ; 1\right] .
$$

On the other hand, writing (8) in the form

$$
I=\Gamma(d) \sum_{n=0}^{\infty} \frac{(-1)^{n}(a)_{n}(b)_{n}}{(1+a-b)_{n} n!}\left\{\frac{(-1)^{n}(c)_{n}}{(1+a-c)_{n}}\right\} .
$$

Now, using (7), we have

$$
I=\Gamma(d) \sum_{n=0}^{\infty} \frac{(-1)^{n}(a)_{n}(b)_{n}}{(1+a-b)_{n} n!}{ }_{2} F_{1}\left[\begin{array}{c}
-n, a+n \\
1+a-c
\end{array} ; 1\right] .
$$

Writing ${ }_{2} F_{1}$ as a series, we have after some simplification

$$
I=\Gamma(d) \sum_{n=0}^{\infty} \sum_{m=0}^{n} \frac{(-1)^{n}(a)_{n}(b)_{n}(-n)_{m}(a+n)_{m}}{(1+a-b)_{n}(1+a-c)_{m} n!m!} .
$$

Using the identities

$$
(a)_{n}(a+n)_{m}=(a)_{n+m} \quad \text { and } \quad(-n)_{m}=\frac{(-1)^{m} n!}{(n-m)!}
$$

we have, after some calculation

$$
I=\Gamma(d) \sum_{n=0}^{\infty} \sum_{m=0}^{n} \frac{(-1)^{n+m}(a)_{n+m}(b)_{n}}{(1+a-b)_{n}(1+a-c)_{m} m!(n-m)!}
$$

Now, using a known result [5, p.57, Equ.(2)]

$$
\sum_{n=0}^{\infty} \sum_{k=0}^{n} B(k, n)=\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} B(k, n+k)
$$

we have

$$
I=\Gamma(d) \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{(-1)^{n}(a)_{n+2 m}(b)_{n+m}}{(1+a-b)_{n+m}(1+a-c)_{m} m!n!} .
$$

Using the identities

$$
(a)_{n+2 m}=(a)_{2 m}(a+2 m)_{n} \quad \text { and } \quad(b)_{n+m}=(b)_{m}(b+m)_{n},
$$

and after some simplification, we have

$$
\begin{aligned}
& I=\Gamma(d) \sum_{m=0}^{\infty} \frac{(a)_{2 m}(b)_{m}}{(1+a-b)_{m}(1+a-c)_{m} m!} \\
& \quad \times \sum_{n=0}^{\infty} \frac{(-1)^{n}(a+2 m)_{n}(b+m)_{n}}{(1+a-b+m)_{n} n!} .
\end{aligned}
$$

Summing up the inner series, we have

$$
I=\Gamma(d) \sum_{m=0}^{\infty} \frac{(a)_{2 m}(b)_{m}}{(1+a-b)_{m}(1+a-c)_{m} m!} \times{ }_{2} F_{1}\left[\begin{array}{cc}
a+2 m, & b+m \tag{10}\\
1+a-b+m
\end{array} ;-1\right] .
$$

Now using Kummer's summation theorem (6) to the right-hand side of 10 and then applying the identity

$$
(a)_{2 m}=2^{2 m}\left(\frac{1}{2} a\right)_{m}\left(\frac{1}{2} a+\frac{1}{2}\right)_{m}
$$

we get after some simplification

$$
I=\frac{\Gamma(d) \Gamma\left(1+\frac{1}{2} a\right) \Gamma(1+a-b)}{\Gamma(1+a) \Gamma\left(1+\frac{1}{2} a-b\right)} \sum_{m=0}^{\infty} \frac{\left(\frac{1}{2} a\right)_{m}(b)_{m}}{(1+a-c)_{m} m!}
$$

Summing up the series, we get

$$
I=\frac{\Gamma(d) \Gamma\left(1+\frac{1}{2} a\right) \Gamma(1+a-b)}{\Gamma(1+a) \Gamma\left(1+\frac{1}{2} a-b\right)}{ }_{2} F_{1}\left[\begin{array}{c}
\frac{1}{2} a, \quad b \tag{11}\\
1+a-c
\end{array}\right] .
$$

With the help of Gauss's summation theorem (5) to the right-hand side of (11), we have

$$
\begin{equation*}
I=\frac{\Gamma(d) \Gamma\left(1+\frac{1}{2} a\right) \Gamma(1+a-b) \Gamma(1+a-c) \Gamma\left(1+\frac{1}{2} a-b-c\right)}{\Gamma(1+a) \Gamma\left(1+\frac{1}{2} a-b\right) \Gamma\left(1+\frac{1}{2} a-c\right) \Gamma(1+a-b-c)} \tag{12}
\end{equation*}
$$

Finally, equating (9) and (12), we get the desired Dixon's summation theorem (1).

This completes our new proof of Dixon's summation theorem for the series ${ }_{3} F_{2}(1)$.

Conclusion Remark

In this note, we established Dixon's summation theorem via evaluating an infinite integral. We conclude this research by remarking that a few new applications of Dixon's theorem are under investigations and will be published soon.

References

[1] Bailey, W.N., Products of generalized Hypergeometric Series, Proc. London Math. Soc., (2), 28, 242-254 (1928).
[2] Bailey, W.N., Generalized Hypergeometric Series, Cambridge University Press, Cambridge, (1935).
[3] Berndt, B.C., Ramanujan'sNotebooks, Part-II, Springer-Verlag, New York, (1987).
[4] Prudnikov, A.P., Brychkov, Yu.A. and Marichev, O.I., Integrals and Series, vol. 3: More Special Functions, Gordon and Breach Science Publishers, (1986).
[5] Rainville, E.D., Special Functions, The Macmillan Company, New York, (1960); Reprinted by Chelsea Publishing Company, Bronx, New York, (1971).

Insuk Kim
Department of Mathematics Education, Wonkwang University,
Iksan, 570-749, Korea
E-mail: iki@wku.ac.kr

Myunghyun Cho
Department of Mathematics Education,
Wonkwang University,
Iksan, 570-749, Korea
E-mail: mhcho@wku.ac.kr

[^0]: Received April 1, 2019. Accepted June 16, 2019.
 2010 Mathematics Subject Classification. 33C20.
 Key words and phrases. Dixon's summation theorem, Hypergeometric series, Generalized Hypergeometric Function.

 This work was supported by Wonkwang University in 2018.
 *Corresponding author

