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ANOTHER PROOF OF CLASSICAL DIXON’S

SUMMATION THEOREM FOR THE SERIES 3F2

Insuk Kim and Myunghyun Cho∗

Abstract. In this short research note, we aim to provide a new
proof of classical Dixon’s summation theorem for the series 3F2

with unit argument. The theorem is obtained by evaluating an
infinite integral and making use of classical Gauss’s and Kummer’s
summation theorem for the series 2F1.

1. Introduction

It is well known that in the theory of generalized hypergeometric
series, classical Dixon’s summation theorem for the series 3F2 [2, 4, 5]
viz.

3F2

[
a, b, c

1 + a− b, 1 + a− c; 1

]
(1)

=
Γ(1 + 1

2a)Γ(1 + a− b)Γ(1 + a− c)Γ(1 + 1
2a− b− c)

Γ(1 + a)Γ(1 + 1
2a− b)Γ(1 + 1

2a− c)Γ(1 + a− b− c)
,

provided Re(a− 2b− 2c) > −2, play a key role.
In a very well known, useful, interesting and popular research paper,

Bailey [1] obtained a large number of very interesting results involving
products of generalized hypergeometric functions by employing classical
Dixon’s summation theorem (1).

As pointed out by Berndt [3] that the following very interesting sum-
mations due to Ramanujan viz.
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(2) 1 +
1

52

(
1

2

)
+

1

92

(
1 · 3
2 · 4

)
+ · · · = π5/2

8
√

2 Γ2(3/4)
,

(3) 1 +

(
1

2

)3

+

(
1 · 3
2 · 4

)3

+ · · · = π

Γ4(3/4)

and

(4) 1 +
1

5

(
1

2

)2

+
1

9

(
1 · 3
2 · 4

)2

+ · · · = π2

4 Γ4(3/4)
,

can be obtained very quickly by employing classical Dixon’s summation
theorem (1) by taking (i) a = 1

2 , b = c = 1
4 , (ii) a = b = c = 1

2 and (iii)

a = b = 1
2 , c = 1

4 , respectively.

In the standard text of Bailey [1], classical Dixon’s summation theo-
rem have been established with the help of the following classical Gauss’s
summation theorem [5] viz.

(5) 2F1

[
a, b
c

; 1

]
=

Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

,

provided Re(c − a − b) > 0, and the following Kummer’s summation
theorem [5] viz.

(6) 2F1

[
a, b

1 + a− b;−1

]
=

Γ(1 + 1
2a)Γ(1 + a− b)

Γ(1 + a)Γ(1 + 1
2a− b)

.

In our present investigation, we aim to provide a new proof of classical
Dixon’s summation theorem (1) by evaluating an infinite integral. For
this, we need the following result, which is a special case of Gauss’s
summation theorem (5) viz.

(7) 2F1

[
−k, a+ k
1 + a− c ; 1

]
=

(−1)k(c)k
(1 + a− c)k

.
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2. New proof of Dixon’s summation theorem (1)

In order to derive the result (1), we proceed as follows. Consider the
following integral

I =

∫ ∞
0

e−t td−1 3F3

[
a, b, c

d, 1 + a− b, 1 + a− c; t
]
dt.

for Re(d) > 0.
Expressing the generalized hypergeometric function 3F3 in series, we

have

I =

∫ ∞
0

e−t td−1
∞∑
n=0

(a)n (b)n (c)n t
n

(d)n (1 + a− b)n (1 + a− c)n n!
dt.

Changing the order of integration and summation, which is permitted
due to the uniform convergence of the series, we have

I =

∞∑
n=0

(a)n (b)n (c)n
(d)n (1 + a− b)n (1 + a− c)n n!

∫ ∞
0

e−t td+n−1dt.

Evaluating the well known gamma integral and making use of the
relation of following Pochhammer symbol with gamma function

(a)n =
Γ(a+ n)

Γ(a)
,

we have, after some simplification

(8) I = Γ(d)

∞∑
n=0

(a)n (b)n (c)n
(1 + a− b)n (1 + a− c)n n!

.

Finally, summing up the series, we have

(9) I = Γ(d) 3F2

[
a, b, c

1 + a− b, 1 + a− c; 1

]
.

On the other hand, writing (8) in the form

I = Γ(d)

∞∑
n=0

(−1)n (a)n (b)n
(1 + a− b)n n!

{
(−1)n (c)n

(1 + a− c)n

}
.

Now, using (7), we have
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I = Γ(d)
∞∑
n=0

(−1)n (a)n (b)n
(1 + a− b)n n!

2F1

[
−n, a+ n
1 + a− c ; 1

]
.

Writing 2F1 as a series, we have after some simplification

I = Γ(d)
∞∑
n=0

n∑
m=0

(−1)n (a)n (b)n (−n)m (a+ n)m
(1 + a− b)n (1 + a− c)m n! m!

.

Using the identities

(a)n(a+ n)m = (a)n+m and (−n)m =
(−1)m n!

(n−m)!
,

we have, after some calculation

I = Γ(d)

∞∑
n=0

n∑
m=0

(−1)n+m (a)n+m (b)n
(1 + a− b)n (1 + a− c)m m! (n−m)!

.

Now, using a known result [5, p.57, Equ.(2)]

∞∑
n=0

n∑
k=0

B(k, n) =
∞∑
n=0

∞∑
k=0

B(k, n+ k),

we have

I = Γ(d)

∞∑
n=0

∞∑
m=0

(−1)n (a)n+2m (b)n+m

(1 + a− b)n+m (1 + a− c)m m! n!
.

Using the identities

(a)n+2m = (a)2m(a+ 2m)n and (b)n+m = (b)m(b+m)n,

and after some simplification, we have

I = Γ(d)
∞∑

m=0

(a)2m (b)m
(1 + a− b)m (1 + a− c)m m!

×
∞∑
n=0

(−1)n(a+ 2m)n (b+m)n
(1 + a− b+m)n n!

.

Summing up the inner series, we have

(10)

I = Γ(d)
∞∑

m=0

(a)2m (b)m
(1 + a− b)m (1 + a− c)mm!

×2F1

[
a+ 2m, b+m
1 + a− b+m

;−1

]
.
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Now using Kummer’s summation theorem (6) to the right-hand side
of (10) and then applying the identity

(a)2m = 22m
(

1

2
a

)
m

(
1

2
a+

1

2

)
m

,

we get after some simplification

I =
Γ(d)Γ(1 + 1

2a)Γ(1 + a− b)
Γ(1 + a)Γ(1 + 1

2a− b)

∞∑
m=0

(12a)m (b)m

(1 + a− c)m m!
.

Summing up the series, we get

(11) I =
Γ(d)Γ(1 + 1

2a)Γ(1 + a− b)
Γ(1 + a)Γ(1 + 1

2a− b)
2F1

[
1
2a, b

1 + a− c; 1

]
.

With the help of Gauss’s summation theorem (5) to the right-hand
side of (11), we have

(12) I =
Γ(d)Γ(1 + 1

2a)Γ(1 + a− b)Γ(1 + a− c)Γ(1 + 1
2a− b− c)

Γ(1 + a)Γ(1 + 1
2a− b)Γ(1 + 1

2a− c)Γ(1 + a− b− c)
.

Finally, equating (9) and (12), we get the desired Dixon’s summation
theorem (1).

This completes our new proof of Dixon’s summation theorem for the
series 3F2(1).

Conclusion Remark

In this note, we established Dixon’s summation theorem via evalu-
ating an infinite integral. We conclude this research by remarking that
a few new applications of Dixon’s theorem are under investigations and
will be published soon.
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