• Title/Summary/Keyword: Distribution statistical model

Search Result 1,255, Processing Time 0.028 seconds

A Study of Statistical Analysis of Rock Joint Directional Data (암반 절리 방향성 자료의 통계적 분석 기법에 관한 연구)

  • 류동우;김영민;이희근
    • Tunnel and Underground Space
    • /
    • v.12 no.1
    • /
    • pp.19-30
    • /
    • 2002
  • Rock joint orientation is one of important geometric attributes that have an influence on the stability of rock structures such as rock slopes and tunnels. Especially, statistical models of the geometric attributes of rock joints can provide a probabilistic approach of rock engineering problems. The result from probabilistic modeling relies on the choice of statistical model. Therefore, it is critical to define a representative statistical model for joint orientation data as well as joint size and intensity and build up a series of modeling procedure including analytical validation. In this paper, we have examined a theoretical methodology for the statistical estimate and hypothesis analysis based upon Fisher distribution and bivariate normal distribution. In addition, we have proposed the algorithms of random number generator which is applied to the simulation of rock joint networks and risk analysis.

Applicability of the Burr XII distribution through dimensionless L-moment ratio of rainfall data in South Korea (우리나라 강우자료의 무차원 L-moment ratio를 통한 Burr XII 분포의 수문학적 적용성 검토)

  • Seo, Jungho;Shin, Hongjoon;Ahn, Hyunjun;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.3
    • /
    • pp.211-221
    • /
    • 2017
  • In statistical hydrology, various extreme distributions such as the generalized extreme value (GEV), generalized logistic (GLO) and Gumbel (GUM) models have been widely used to analyze the extreme events. In the case of rainfall events in South Korea, the GEV and Gumbel distributions are known to be appropriate among various extreme distribution models. However, the proper probability distribution model may be different depending on the type of extreme events, rainfall duration, region, and statistical characteristics of extreme events. In this regard, it is necessary to apply a wide range of statistical properties that can be represented by the distribution model because it has two shape parameters. In this study, the statistical applicability of rainfall data is analyzed using the Burr XII distribution and the dimensionless L-moment ratio for 620 stations in South Korea. For this purpose, L-skewness and L-kurtosis of the Burr XII distribution are derived and L-moment ratio diagram is drawn and then the applicability of 620 stations was analyzed. As a result, it is found that the Burr XII distribution for the stations of the Han River basin in which L-skewness is relatively larger than L-kurtosis is appropriate, It is possibility of replacing the distribution of commonly used Gumbel or GEV distributions. Therefore, the Burr XII model can be replaced as an appropriate probability model in this basin.

Further study on the risk model with a continuous type investment (연속적으로 투자가 이루어지는 보험상품 리스크 모형의 추가 연구)

  • Choi, Seung Kyoung;Lee, Eui Yong
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.6
    • /
    • pp.751-759
    • /
    • 2018
  • Cho et al. (Communications for Statistical Applications and Methods, 23, 423-432, 2016) introduced a risk model with a continuous type investment and studied the stationary distribution of the surplus process. In this paper, we extend the earlier analysis by assuming that additional instant investment is made when the surplus process reaches a certain sufficient level. We obtain the explicit form of the stationary distribution of the surplus process. The case is shown as an example, when the amount of claim is exponentially distributed.

Improved Exact Inference in Logistic Regression Model

  • Kim, Donguk;Kim, Sooyeon
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.2
    • /
    • pp.277-289
    • /
    • 2003
  • We propose modified exact inferential methods in logistic regression model. Exact conditional distribution in logistic regression model is often highly discrete, and ordinary exact inference in logistic regression is conservative, because of the discreteness of the distribution. For the exact inference in logistic regression model we utilize the modified P-value. The modified P-value can not exceed the ordinary P-value, so the test of size $\alpha$ based on the modified P-value is less conservative. The modified exact confidence interval maintains at least a fixed confidence level but tends to be much narrower. The approach inverts results of a test with a modified P-value utilizing the test statistic and table probabilities in logistic regression model.

Bivariate odd-log-logistic-Weibull regression model for oral health-related quality of life

  • Cruz, Jose N. da;Ortega, Edwin M.M.;Cordeiro, Gauss M.;Suzuki, Adriano K.;Mialhe, Fabio L.
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.3
    • /
    • pp.271-290
    • /
    • 2017
  • We study a bivariate response regression model with arbitrary marginal distributions and joint distributions using Frank and Clayton's families of copulas. The proposed model is used for fitting dependent bivariate data with explanatory variables using the log-odd log-logistic Weibull distribution. We consider likelihood inferential procedures based on constrained parameters. For different parameter settings and sample sizes, various simulation studies are performed and compared to the performance of the bivariate odd-log-logistic-Weibull regression model. Sensitivity analysis methods (such as local and total influence) are investigated under three perturbation schemes. The methodology is illustrated in a study to assess changes on schoolchildren's oral health-related quality of life (OHRQoL) in a follow-up exam after three years and to evaluate the impact of caries incidence on the OHRQoL of adolescents.

Bayesian Analysis of a New Skewed Multivariate Probit for Correlated Binary Response Data

  • Kim, Hea-Jung
    • Journal of the Korean Statistical Society
    • /
    • v.30 no.4
    • /
    • pp.613-635
    • /
    • 2001
  • This paper proposes a skewed multivariate probit model for analyzing a correlated binary response data with covariates. The proposed model is formulated by introducing an asymmetric link based upon a skewed multivariate normal distribution. The model connected to the asymmetric multivariate link, allows for flexible modeling of the correlation structure among binary responses and straightforward interpretation of the parameters. However, complex likelihood function of the model prevents us from fitting and analyzing the model analytically. Simulation-based Bayesian inference methodologies are provided to overcome the problem. We examine the suggested methods through two data sets in order to demonstrate their performances.

  • PDF

Prediction of sharp change of particulate matter in Seoul via quantile mapping

  • Jeongeun Lee;Seoncheol Park
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.3
    • /
    • pp.259-272
    • /
    • 2023
  • In this paper, we suggest a new method for the prediction of sharp changes in particulate matter (PM10) using quantile mapping. To predict the current PM10 density in Seoul, we consider PM10 and precipitation in Baengnyeong and Ganghwa monitoring stations observed a few hours before. For the PM10 distribution estimation, we use the extreme value mixture model, which is a combination of conventional probability distributions and the generalized Pareto distribution. Furthermore, we also consider a quantile generalized additive model (QGAM) for the relationship modeling between precipitation and PM10. To prove the validity of our proposed model, we conducted a simulation study and showed that the proposed method gives lower mean absolute differences. Real data analysis shows that the proposed method could give a more accurate prediction when there are sharp changes in PM10 in Seoul.

A Study on the Simulation of Monthly Discharge by Markov Model (Markov모형에 의한 월유출량의 모의발생에 관한 연구)

  • 이순혁;홍성표
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.31 no.4
    • /
    • pp.31-49
    • /
    • 1989
  • It is of the most urgent necessity to get hydrological time series of long duration for the establishment of rational design and operation criterion for the Agricultural hydraulic structures. This study was conducted to select best fitted frequency distribution for the monthly runoff and to simulate long series of generated flows by multi-season first order Markov model with comparison of statistical parameters which are derivated from observed and sy- nthetic flows in the five watersheds along Geum river basin. The results summarized through this study are as follows. 1. Both two parameter gamma and two parameter lognormal distribution were judged to be as good fitted distributions for monthly discharge by Kolmogorov-Smirnov method for goodness of fit test in all watersheds. 2. Statistical parameters were obtained from synthetic flows simulated by two parameter gamma distribution were closer to the results from observed flows than those of two para- meter lognormal distribution in all watersheds. 3. In general, fluctuation for the coefficient of variation based on two parameter gamma distribution was shown as more good agreement with the observed flow than that of two parameter lognormal distribution. Especially, coefficient of variation based on two parameter lognormal distribution was quite closer to that of observed flow during June and August in all years. 4. Monthly synthetic flows based on two parameter gamma distribution are considered to give more reasonably good results than those of two parameter lognormal distribution in the multi-season first order Markov model in all watersheds. 5. Synthetic monthly flows with 100 years for eack watershed were sjmulated by multi- season first order Markov model based on two parameter gamma distribution which is ack- nowledged to fit the actual distribution of monthly discharges of watersheds. Simulated sy- nthetic monthly flows may be considered to be contributed to the long series of discharges as an input data for the development of water resources. 6. It is to be desired that generation technique of synthetic flow in this study would be compared with other simulation techniques for the objective time series.

  • PDF

Hidden Truncation Normal Regression

  • Kim, Sungsu
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.6
    • /
    • pp.793-798
    • /
    • 2012
  • In this paper, we propose regression methods based on the likelihood function. We assume Arnold-Beaver Skew Normal(ABSN) errors in a simple linear regression model. It was shown that the novel method performs better with an asymmetric data set compared to the usual regression model with the Gaussian errors. The utility of a novel method is demonstrated through simulation and real data sets.

Analysis of Structural Reliability under Model and Statistical Uncertainties: a Bayesian Approach

  • Kiureghian, Armen-Der
    • Computational Structural Engineering : An International Journal
    • /
    • v.1 no.2
    • /
    • pp.81-87
    • /
    • 2001
  • A framework for reliability analysis of structural components and systems under conditions of statistical and model uncertainty is presented. The Bayesian parameter estimation method is used to derive the posterior distribution of model parameters reflecting epistemic uncertainties. Point, predictive and bound estimates of reliability accounting for parameter uncertainties are derived. The bounds estimates explicitly reflect the effect of epistemic uncertainties on the reliability measure. These developments are enhance-ments of second-moment uncertainty analysis methods developed by A. H-S. Ang and others three decades ago.

  • PDF