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ABSTRACT

A framework for reliability analysis of structural components and systems under conditions of statistical and model uncertainty
is presented. The Bayesian parameter estimation method is used to derive the posterior distribution of model parameters reflecting
epistemic uncertainties. Point, predictive and bound estimates of reliability accounting for parameter uncertainties are derived. The
bounds estimates explicitly reflect the effect of epistemic uncertainties on the reliability measure. These developments are enhance-
ments of second-moment uncertainty analysis methods developed by A. H-S. Ang and others three decades ago.
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1. Introduction

Two types of uncertainties prevail in the assessment of
structural reliability: intrinsic or aleatory variabilities, and
epistemic or knowledge-based uncertainties. The former
are those arising from variabilities inherent in the nature of
phenomena, such as the natural randomness in the material
property values or in the magnitudes and durations of
loads such as those arising from earthquakes, wind or traf-
fic. These variabilities have been the main focus of atten-
tion in the structural reliability literature. Epistemic uncer-
tainties arise primarily from the inexact nature of the
mathematical models used to idealize structural behavior
and limit states, and from the finite size and accuracy of
data samples upon which estimates of the model param-
eters are made. Whereas the intrinsic variabilities are
beyond our control (short of changing the nature of the
phenomenon itself), the epistemic uncertainties can be
influenced by our decisions. Specifically, we can reduce
the epistemic uncertainties by employing more refined
models or collecting larger and more accurate data. This
fundamental difference suggests the desirability of sep-
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arately treating the aleatory and epistemic uncertainties so
that the influence of the latter on the reliability estimate
can be assessed and appropriate actions can be taken to
reduce it.

A. H-S. Ang has been a pioneer in dealing with the issue
of uncertainties in structural reliability theory since the late
1960’s. In a series of pioneering and important papers, he
and his coworkers laid out a framework for reliability
analysis that properly accounted for mode] and statistical
uncertainties, in addition to intrinsic variabilities, within a
first-order, second-moment reliability analysis context.
Particularly noteworthy are the papers by Ang and Amin
(1968, 1969), Ang (1972, 1973) and Ang and Cornell
(1974). These concepts were applied to development of
design criteria and code calibration in a number of papers,
most notably in Ellingwood and Ang (1974) for rein-
forced concrete structures. Later papers extended these
concepts to structural system reliability, e.g., Bennet and
Ang (1986) and Quek and Ang (1990).

The first-order, second-moment structural reliability
method described in the series of papers culminating with
Ang and Cornell (1974), as well as earlier works by
Freudenthal (1947), Cornell (1969) and others, laid out a
consistent framework that formed the bases of a more
refined theory developed by Hasofer and Lind (1974). The
latter proposed linearization of the limit-state function at a
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point that preserved the invariance of the second-moment
reliability measure with respect to the formulation of the
problem. Later advances by Rackwitz and Fiessler (1978),
Ditlevsen (1981), Hohenbichler and Rackwitz (1981), Der
Kiureghian and Liu (1986) and Winterstein and Bjerager
(1987) allowed incorporation of information on the prob-
ability distribution or higher statistical moments in reli-
ability analysis.

This paper attempts to propose a Bayesian framework
for reliability analysis that is capable of incorporating all
the relevant information that is available to the analyst.
Furthermore, it properly and fully accounts for all the pre-
vailing uncertainties. In this sense, it is a full-distribution
version of what Ang and others did in a second-moment
context three decades ago.

While second-moment methods have played a crucial
role in the development of structural reliability theory, the
time has come to move on. The idea that we know the first
two (or any finite number of) statistical moments of a ran-
dom variable and nothing else is a fabrication of our imag-
ination or an idealization for the sake of convenience. In
the real world, information about a random variable is
available in the form of observed values or bounds, pos-
sibly affected by measurement error, from which estimates
of the mean, the standard deviation and higher moments of
the random variable can be obtained with decreasing order
of accuracy. Furthermore, mathematical models used to
describe structural behavior and limiting states are often
idealizations of complex physical reality that need to be
assessed, both in terms of their bias and prevailing error,
by statistical analysis of observed laboratory or field data.
The Bayesian parameter estimation method provides an
ideal framework for processing of information and anal-
ysis of uncertainties under these conditions.

This framework is used here to propose a new and com-
prehensive approach to the assessment of structural reli-
ability under model and statistical uncertainties.

2. Formulation of the Reliability Problem

Attention in this paper is restricted to time- and space-
invariant reliability problems that are defined in terms of a
set of random variables (not random processes) x describ-
ing quantities with intrinsic variabilities. Let f(x|6))
denote the distribution of x, where 0, denotes the set of
distribution parameters. In many cases, 8, denotes the set
of first and second moments of the random variables. In
general, these parameters are unknown and must be esti-
mated on the basis of available data.

As is usual, we will define the state of the structural sys-

tem in the outcome space of the random variables in terms
of a set of limit-state functions g;(x, 8,),i=1,2,..., where
the index i denotes the components of the structural sys-
tem, and 6, denotes the set of parameters entering the
limit-state functions. By convention, these functions are
formulated such that the event {g,(x, 6,)<0} denotes the
failure of component i. In general, the limit-state param-
eters 6, are unknown and must be estimated by assessing
the limit-state models against relevant laboratory or field
observations. For the sake of convenience, we introduce
0= (6,0, as the set of all model parameters of the reli-
ability problem.

Having defined the distribution function and the limit-
state functions, the reliability of the structural system is
expressed in the most general form as

] x| 8 dx (1)
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where the integration is over the failure domain of the
structural system. In this expression, C;,k=1,2, ..., denote
the cut sets of the system. Each cut set denotes a collection
of components, whose joint failures constitute the failure of
the structural system. The intersection is over all the com-
ponents of each cut set, and the union is over all the cut
sets. This formulation includes the special case of a series
system, where each cut set contains only one component,
as well as the special case of a parallel system, where there
is only one cut set. It is also useful to define the generalized
reliability index by the transformation

B(8) = & '[1-P(O)] ¥)
where cD_I[-] denotes the inverse of the standard normal
probability function.

In the above expressions, we have explicitly shown the
dependence of the failure probability and the generalized
reliability index on the assumed values of the model param-
eters. Clearly, if 81s uncertain, either due to uncertainty in the
distribution parameters, the limit-state parameters, or both,
the corresponding estimates of the failure probability and the
generalized reliability index will also be uncertain. The above
reliability values should then be regarded as conditional reli-
ability measures for given values of the parameters. Under
such conditions, depending on how the uncertainties in the
model parameters are handled, one can obtain different mea-
sures of reliability, as described later in this paper.

In the above formulation, we have employed the dis-
tribution model M,=f(x, 6, and the set of limit-state mod-
els My={g(x,6,),i=1,2,...} . The choice for these models
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may not be obvious. Geyskens and Der Kiureghian (1996)
describe a decision theoretic framework for model selec-
tion. Alternatively, models may be selected on the basis of
their respective error estimates, as described below.

3. Bayesian Parameter Estimation

The well known Bayesian updating rule is used to esti-
mate both the distribution and limit-state parameters on
the basis of relevant observations. For a set of parameters
0, this rule is stated as

f(6) = cL(6)p(0) 3)

where p(6) is the prior distribution representing our
state of knowledge about @ before making the observa-
tions, L(@) is the likelihood function representing the
objective informatiion gained from the observations,
c= [J.L(B)p(B)dB]_ is a'normalizing factor, and (@) is
the posterior distribution representing our updated state of
knowledge about 8. The prior may incorporate any subjec-
tive information about @ that is based on our engineering
experience and judgment. The likelihood is a function pro-
portional to the conditional probability of the observations
for given 0. Specific cases of its formulation are described
in the subsequent sections.

Once the posterior distribution of @is determined, one
can proceed with computing its posterior statistics. We
denote the posterior mean vector as My and the pos-
terior covariance matrix as Xy, . Computation of the nor-
malizing factor and the posterior statistics is not a simple
matter, as it requires evaluation of multifold integrals over
the Bayesian kernel L(0)p(0). Numerical algorithms for
computing such integrals are developed by Geyskens et al.
(1993). Alternatively, one can use importance sampling to
evaluate these integrals (Ditlevsen and Madsen 1996). When
large amounts of data are available, the maximum likelihood
estimator (the value of @ that maximizes the likelihood func-
tion), denoted 6,,; », provides a good approximation of the
posterior mean. Furthermore, the negative of the inverse of
the Hessian of the logarithm of the likelihood function at the
MLE point provides an approximation to the posterior cova-
riance matrix. These approximations can be used to for-
mulate an effective sampling density for importance sampl-
ing integration of the Bayesian kemel.

In the following two sections, we describe the for-
mulation of the likelihood function for distribution and
limit-state parameters.

3.1 Likelihood Function for Distribution Parameters
The most common type of observation consists of mea-
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sured values x,7,1,2,...,N, of the random variables. If
the observations are statistically independent, then the
likelihood function is given by the well known propor-
tionality relation

N

L(6)) Hf (xil 6) €]

i=1

Note that any scalar coefficient of the likelihood func-
tion can be incorporated into the normalizing factor c.
Hence, we only need to determine the likelihood function
in proportion. In many cases, the observed values of ran-
dom variables contain measurement error. That is, instead
of measuring the actual realization x;, we measure x; such
that e; = x;~x; is the measurement error. In most cases e,
can be considered to be normally distributed with its mean
vector and covariance matrix determined by calibration of
the measurement devices or procedures. If the errors at
successive measurements are statistically independent, the
likelihood function remains the same as in (4), except that
one has to use the joint probability density function of the
sum x;+e; in place of f(x;6)).

In some cases, the available observations are not direct
measurements of the random variables, but a set of events
that involve the random variables. Most generally, these
can be formulated as either inequality events {4;(x)<0}
or equality events {4,(x)=0}, for (i=1,2,...,N), where
hi{x) are “limit-state” functions defining the observed
events. For example, in estimating the comipressive strength
of concrete, one may make use of the observation that
spalling in a specimen has occurred under a certain deter-
ministic or random load. In that case, h;(x) denotes the
limit-state function describing the event of spalling. If the
inequality events are statistically independent, the like-
lihood function takes the form

N N

L(8) s [TPlhx)<01=T] [ fix|69dx 5)

i=1 i=1h(x)=0

The probability integrals on the right-hand side are seen
to be similar to integrals appearing in cotnponent reli-
ability analysis and can be evaluated by similar tech-
niques. One special inequality event is h,(x) = a,—x<0,
where x is an element of x. In that case we are observing a
lower bound «; for the random variable x. Likewise,
hi(x) = x—b;<0, when we observe an upper bound b, for
the random variable x. In such cases, the probability terms
in (5) can be expressed in terms of the cumulative dis-
tribution function of the random variable x. In Der
Kiureghian (1999b), an application of the above likelihood
function for estimating the distribution parameters of the
capacity of certain electrical substation equipment is pre-
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sented, where the inequality events represent observations of
damage or no damage of the equipment in past earthquakes.
The likelihood function for statistically independent
equality events can be written in the form
N

N
L(8) o= T] lim P[0 <,(x) < )= H(%P[hi(x)— <015,
i=1 i=1
(6)

Each term on the right-hand side is similar to the prob-
ability sensitivity in component reliability analysis and can
be solved by techniques available for such analysis. The
special case h(x)=x-x,<0 cormresponds to the direct
measurement of the random variables described above, for
which the likelihood function is given by (4). One can
account for errors in the formulation of the event functions
hi(x) in the manner described in the following section.

The uncertainties inherent in the parameters 6, are pri-
marily statistical in nature. That is, they are due to the
finite size of the observation data. However, they may also
arise from the wrong selection of the distribution model
My=f(x,0,) . If several contending models are available,
one may select a combined model that paramertizes the
choice (Der Kiureghian 1989). A decision theoretic frame-
work for selection of the model is discussed in Geyskens
et al. (1996). Alternatively, one may select the model that
has the smallest error variance.

3.2 Likelihood Function for Limit-State Parameters

In general, the limit-state functions g(x,6,),i=1,2,...,
represent idealized mathematical models describing the
boundary between “fail” and “safe” domains of the com-
ponents of the structural system. Often these models are
themselves composed of sub-models that describe the beha-
vior, capacity or load effect of the specific components of the
system. Without loss of generality, we will focus our atten-
tion on a generic model y = g(x, 6,) which may represent
either a limit-state model itself, or a constituent sub-model.

A model such as y = g(x, 8,) is a mathematical expres-
sion relating a set of observable variables (y,x) through a
set of unobservable parameters 6,. Most often the main
purpose of a model is to provide a prediction of the depen-
dent variable y for given values of the independent (not in
the statistical sense) variables x. This is the case, for exam-
ple, when y represents the capacity of a component and x
is the set of material properties and member dimensions.
In virtually all cases, the model is an imperfect repre-
sentation of reality. The imperfection in the model may

o T80 T of

=1 i=m+l

arise from its inexact form, or due to “missing variables,”
1.e., variables that have an influence on the dependent vari-
able, but which are not included in the model either for the
sake of simplicity or due to our ignorance of their effect.
To signify the imperfect nature of the model, we use the
notation g(x, 8,) . The perfect model then takes the form

y=§(x,8,)+¢ @)

where £ denotes the model error. With a proper formulation
of the model, it is justifiable to assume that € has the normal
distribution (normality assumption) with a constant but
unknown standard deviation o (homoskedasticity assump-
tion). Furthermore, with the objective of obtaining an unbi-
ased model, the mean of £ s set to zero. The normality and
homoskedasticity assumptions can be, at least approxi-
mately, satisfied through a suitable transformation of
2(x, 6,) and y (Box and Tiao, 1992). For example, if the
quantities of interest are non-negative and the model error
is proportional to the mean of the quantity, then the loga-
rithmic transformation might be suitable. Also, setting the
mean of £ equal to zero forces the model parameters to take
values such that the corrected model is unbiased. In situa-
tions where an existing (biased) deterministic model g(x)
is to be employed, the corrected model may take the form

y=g()+Ux, 0 +¢ @®)

where the term y(x, 8,) now corrects the bias in the deter-
ministic model as a function of x and the parameters 6, .
This is the form used, for example, by Gardoni et al. (2002)
in developing predictive capacity models for reinforced
concrete columns based on state-of-the-art deterministic
models. In the following discussion of the likelihood func-
tion, we use the more compact form in (7).

The likelihood function for estimating the unknown
model parameters 6, and ¢ depends on the nature of the
available information. Various forms of this function are
presented in Der Kiureghian (1990), including forms that
account for measurement error. Here we will only consider
the case where accurately measured values or bounds of
the dependent variable y are given for a set of observations
x,i=1,2,...,N, of the independent variables. Suppose
these measurements consist of the values y,i=1,...,m,
lower bounds a,<y,i =m+1,...,m+n, and upper bounds
y»b,i=m+n+1,...,N. Owing to the normal distribution
of & assuming the model error terms at successive obser-
vations are statistically independent, the likelihood func-
tion takes the form

a; g(xl,Bg) H @(b g(xl,B)) ©)

i=m+n+l
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where ¢(-) denotes the standard normal probability density
function and &(-) denotes the standard normal cumulative
probability function. If measurement errors are present, y;
and x; must be replaced by y,+e; and 6;+ 6;, respectively,
where y, and ¥; are the measured values and ¢, and e; are
the respective measurement errors. The corresponding like-
lihood function then involves the probability distribution
of g(x;+e,0,)+e—¢;. A first-order approximation of
&(%;+e;, 6,) around the mean of e; can be used to linearize
this expression so that the distributions remains nommal.

4. Reliability Estimates Under Epistemic
Uncertainties

Having described methods for assessing the posterior
distribution of the model parameters 6 = (6, 6,], we now
turn our attention to the estimation of reliability under
parameter uncertainties. As mentioned earlier, when @ are
uncertain, the reliability measures in (1) and (2) should be
regarded as conditional measures. Depending on how we
treat the parameter uncertainties, different measures of
reliability are obtained, as described below.

4.1 Point Estimate of Reliability

A simple estimate of the reliability is obtained by use of
a point estimate  of 6 in (1) and (2). This could be either
the posterior mean, 6= My, or the maximum likelihood
estimator, 8 = 6y, ;. The corresponding point estimates of
the failure probability, P{6), and the generalized reli-
ability index, B(6), obviously do not account for the
epistemic uncertainties inherent in the model parameters.
It is worth noting that P{M,) and B(M,) represent first-
order approximations of the means of the conditional fail-
ure probability and the reliability index, respectively.

4.2 Predictive Reliability

One way to account for the epistemic uncertainties in
assessing the reliability is to incorporate the uncertainty in
the model parameters directly in the calculation of the fail-
ure probability. In essence, we treat the epistemic uncer-
tainties in the same manner as the intrinsic variabilities.
The corresponding estimate of the failure probability is
obtained as

By= | £x16)A(8)f(6,)d6,d0,dx (102)
i8>, 8920}
= | Fx)A6,)d0,dx (10b)

UMisdx 6920

[T

Computational Structural Engineering 2 (2001) 81~87 85

= Eo[P{0)] (10c)
And the corresponding reliability index is
B=&'[1-P) (11)

where f(0,) and £(6,) are the posterior distributions of 6;
and 6,, respectively, and

Ax) = [fx|09f(8)d8;

is the predictive (Bayesian) distribution of the random
variables. Equation (10) shows that the predictive failure
probability is the mean value of the conditional failure
probability over the space of the model parameters. Fur-
thermore, (10a) and (10b) offer two alternative ways of
computing the predictive failure probability: (a) solve the
reliability problem in the combined space of the random
variables (x, 6, 6,) using the joint distribution f(x|6)f( 6y
f(8,), or (b) solve the reliability problem in the reduced
space of the random variables (x, 8,) with the joint distri-
bution f(x)f( 6,) . The second alternative is useful when the
predictive distribution of x is available in closed form.
This is the case, for example, for the so called conjugate
distributions (see Ang and Tang, 1975). It is noted from
(11) that the predictive reliability index corresponds to
the mean of the failure probability over the space of the
model parameters. Thus, P{My) is a first-order approxi-
mation of Py.

Whereas the above predictive reliability measures incor-
porate the effect of epistemic uncertainties in the reliability
estimate, they do not provide a direct measure of the influ-
ence of these uncertainties. As their name suggests, these
estimates are useful for prediction purposes, as they
account for all the prevailing uncertainties, They are also
useful in expected utility decision making. However, in
many applications, it is necessary to provide an explicit
measure of the uncertainty in the reliability estimate that
arises from the epistemic uncertainties, A practical ap-
proach for this purpose is suggested below.

(12)

4.3 Bounds on Reliability

As described in Der Kiureghian (1989), it is possible to
determine the probability distribution of the conditional
failure probability, P{8), and reliability index, 5(6), that
reflect the uncertainties in these measures arising from the
epistemic uncertainties. However, such analysis requires
nested reliability calculations that can be cumbersome and
costly. A simpler approach is to estimate the statistical
moments of these measures by first-order approximation.
Owing to the less nonlinear dependence of the reliability
index on the model parameters @, it is better to apply this
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approximation on the function B(6). Accordingly, we
obtain the

approximate mean and variance of the conditional reliabil-
ity index from

Up= f(My) (13)

3=V o Z66V o8 (14)

where VyfB denotes the gradient of the reliability index
with respect to the model parameters, evaluated at the pos-
terior mean M. The standard deviation oy is a direct mea-
sure of the uncertainty in the reliability measure arising
from the epistemic uncertainties. It is important to note that
the calculation of ug and oy from the above expressions
requires a single reliability analysis using the posterior
mean values of the model parameters together with the reli-
ability sensitivities. Note that the reliability sensitivity mea-
sures are easily computed in the first-order reliability
method, FORM (Ditlevsen and Madsen 1996).

Roughly speaking, the reliability index interval pgtig
corresponds to a 70% confidence interval on the reliability
index. This interval can be transformed back to estimate
the corresponding interval of the failure probability.
However, since B corresponds to the true mean of the
failure probability, it is better to compute the probability
interval by transforming ftog. Hence, an approxima-
tion of the 70% confidence interval of the failure prob-
ability around its mean P, is given by

(Proq = DI-(Btop)] (15)

This interval reflects the influence of the epistemic uncer-
tainties on the failure probability.

Specific applications of the above Bayesian reliability
formulations can be found in Der Kiureghian (1999a,
1999b), Gardoni et al (2002) and Sasani and Der
Kiureghian (2001).

5. Summary and Conclusions

A Bayesian, full-distribution theory of structural reli-
ability under conditions of statistical and model uncer-
tainty is described. This theory is an enhancement of the
second-moment theory for such analysis presented by A.
H-S. Ang and others in late 1960°s and early 1970’s, The
formulation presented here is richer in the sense that it can
incorporate all kinds of information and it properly
accounts for all types of uncertainties. Furthermore,
explicit measures of uncertainty in the reliability estimate
that reflect the effect of epistemic uncertainties is given.
No doubt, these developments would not have been pos-

sible without the pioneering contributions of A. H-S. Ang
and others three decades ago.
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