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Bayesian Analysis of a New Skewed Multivariate
Probit Model for Correlated Binary Response Data'

Hea-Jung Kim!

ABSTRACT

This paper proposes a skewed multivariate probit model for analyzing
a correlated binary response data with covariates. The proposed model is
formulated by introducing an asymmetric link based upon a skewed mul-
tivariate normal distribution. The model connected to the asymmetric
multivariate link, allows for flexible modeling of the correlation structure
among binary responses and straightforward interpretation of the parame-
ters. However, complex likelihood function of the model prevents us from
fitting and analyzing the model analytically. Simulation-based Bayesian in-
ference methodologies are provided to overcome the problem. We examine
the suggested methods through two data sets in order to demonstrate their
performances.

Keywords: Correlated binary data; MCMC method; latent variables approach;
Monte Carlo accept-reject procedure; partial Bayes factor; skewed multivariate
normal distribution.

1. Introduction

In many applications, one is confronted with multivariate binary response
data: Response vectors of correlated binary variables, along with covariates, ob-
served for each unit in a sample. The response vector may include repeated
measurements of units on the same variable, as in longitudinal studies or in sub-
sampling primary units. An example for the latter situation is common in genetic
studies where a family is the cluster but responses are given by the members of
the family. The response vector also arises in settings of multivariate measure-
ments on a random cross-section of subjects where the response vector consists
of different variables, e.g., different questions in an interview.
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Models for the analysis of such data are available. Carey, Zeger, and Diggle
(1993) and Glonek and McCullagh (1995) suggested the generalization of the
binary logistic model to multivariate outcomes in conjunction with a particular
reparameterized representation for the correlations among correlated binary data.
Ashford and Sowden (1970) and Amemiya (1985) extended the binary probit
model to get the multivariate probit model. Ochi and Prentice (1984) and Chib
and Greenberg (1996) also considered estimation of the extended model.

Foregoing models are called as multivariate symmetric link models in the sense
that they are obtained from generalizing the most common symmetric links, the
probit and logit links. Although they are commonly used for regressing multivari-
ate binary response on a set of covariates, sometimes they do not provide the best
fit available for a given data set. In this case the link could be misspecified, which
can yield substantial bias in the mean response estimates (see Czado and Santner
1992). In particular, rare event cases where respective marginal probabilities of
one or more elements of the binary response vector approach 0 at different rate
than they approach 1, the symmetric link models are known to be inappropriate
(see Chen, Dey and Chao, 1999). The most intuitive approach to prevent such
a misspecification is to construct a multivariate asymmetric link model whose
marginal models embed a symmetric link into a wide parametric class of links.
Many such parametric classes for univariate binary data have been proposed in
the literature. For the related works, we refer Basu and Mukhopadhyay (2000),
Chen, Dey and Chao (1999), Czado (1994) and references therein. However, un-
like the univariate case, an asymmetric link model for the multivariate binary
response data has not been seen yet.

The purpose of this paper is to propose a multivariate asymmetric link model.
It is a variant of multivariate probit model considered by Chib and Greenberg
(1996) and is motivated by using a skewed multivariate normal distribution of Az-
zalini and Valle (1996), where the marginal densities are scalar skew-normal. The
format of the paper is thus as follows. Section 2 introduces a multivariate skewed
probit model along with theoretical results necessary for constructing the model.
In Section 3 we show that the suggested model is computationally attractive.
In particular, by using a latent variable approach of Albert and Chib (1993),
Markov chain Monte Carlo (MCMC) algorithms can be easily implemented to
sample from the posterior distribution of the parameters of the model. Section 4
considers a Bayesian approach that enables us to do a model comparison between
symmetric and asymmetric link models. In Section 5, two illustrative examples
are given to examine and demonstrate the performances of the Bayesian infer-
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ence methods considered in the previous sections. We finish this paper with brief
concluding remarks in Section 6.

2. The Skewed Multivariate Probit Model

2.1. The Model

Let Y;; denote a binary 1-0 response on the ith observation unit on jth vari-
able and let ¥; = (Y;1,...,Y;p)" denote the collection of correlated responses
on all p binary response variables and Yi,...,Y, are independent. Suppose
zij = (%41,...,Tijp)’ be the corresponding p-dimensional regression vector for
i=1,...,nand j =1,...,p. (Note that z;;; may be 1, which correspond to an
intercept.) Also let 3; € RFi be a k; column vector of regression coefficients, and
B= (ﬂ;vsﬁ;’;)’ € Rk’ k= Z?:l k;.

In order to set up our skewed multivariate probit model, we introduce a p-

dimensional independent latent random vectors Z; = (Z;1,...,Z;),i=1,...,n,
such that
1 if Z;; >0
Y, = J
hd { 0 if Z;<0, 1)
and assume that
Z; ~ Np(X{B + 6w;, ), (2)
w; % TN(0,1), (3)

a truncated standard normal with its density
g(w) = (2/m)"? exp{—w?/2}, w >0,

where d = (d1,...,0dp)’, a parameter vector and X; = diag(z;, ... s Tip) isapxk
covariate matrix. In (2) we take ¥ = {p;;} to be a correlation matrix to ensure
the identifiability of the parameters. See Chib and Greenberg (1998) and Dey
and Chen (1996) for detailed discussions.

The model defined by (1) through (3) has several attractive properties. First,
when 6 = 0, it reduces to the standard multivariate probit model. Second, since
the distribution of w; is the truncated standard normal the conditional distribu-
tion of Z; given wj; is a p-variate normal with mean X;8 + dw; and correlation
matrix ¥, while the marginal distribution of Z; is a skewed p-variate normal. The
marginal probability density function of Z; is given by the following Theorem.
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Theorem 1. Under the skewed multivariate probit model, the distribution of Z,
is a skewed p-variate normal with its density

h(Z;|6,8,Z) = 2¢p(Z;; X;8,0)®(d/ (Z; — XiB)), (4)
where
o =8'SH 1+ 6271672 ©=%+468 >0,

and ¢p(Z;; Xi8,0) and ®(-) denote the probability density of p-variate normal
with mean X; and covariance matrix © and distribution function of the standard
normal, respectively.

Proof. Let U; = Z; — X3, then using a standard method for transformations of
random variables, the density of U; at point u; € RP is

h(u9, X)

_ 2 &0 . (u; — 6w;)' T (u; — dw;) .
- G ), Hwiew]- 2 jam

2exp {—uiT~lui/2 + (uT6)2/[2(1 + 'S 16)]}
(2m)P/2|T|1/2(1 + 6'%-18)1/2

o0
% / (1+6'E718)12¢ ((1 + 02710 Y2 (w; — TN /(1 + 5’2—15)) dw;
0

2exp{—[u;2‘1uz-—(uéE‘lé)z/(l+6’E“‘5)]/2}<1>( I'E )
(2m)P/2|E(1/2(1 + §'E-19)1/2 (1+4dz-18)172 )"

where ¢(-) is the probability density function of the standard normal. Since

T-155'g-1
-1 _ -1 _
(E+08)" =37~ Trovip
we see that ( ’2‘16)2
-1 U; _ -1
W T g T WO ®)
where
O =X +66 and |0] =|T 46| = |B|(1 + 'S L6). (6)

Moreover, © > 0 because 'On = 7'Sn + (76)2 > 0 for all 7 # 0 and & > 0.
Replacing (5) and (6) in the above joint density of U; and transforming U; to Z;
via the relation U; = Z; — X, we have the result.



Bayesian Analysis of Skewed Multivariate Probit Model 617

Corollary 1. Let Z; = (Zi1,...,Zsp)', and let o2 and a%j be the variances of

w; and Z;;. If u,([?’ ) denote the standardized third moment of w;; that is ufg) =

E{[w; — E(w;)}/ow}?. Then marginal density of Z;; is

, ey = TB)\
f(zlJl‘SJ,ﬂJ) = 2¢(zij;$ijﬂja1 +6?)¢ (L((W) y J = ]-1 » Dy (7)

and its standardized third moment u:’zj is given by

3
3 —=F (_Zij - EZij>3 _ Sobu (8)
bz, = s - 3 ’
Z; 9z;

where ¢(zij; 2;;85,1 + 632) is the pdf of N(z};8;,1+ 5]2)

Proof. Let U; = Z; — X;, then applying the result by Azzalini and Valle (1996),
we have the moment generating function of U;;

My, (t) = 2exp{t'0Ot/2}®{t'}.

Therefore, after substantial reduction, the moment generating function of Z; is
given by
Mgz, (t) = 2exp{t' X, + t'Ot/2}®{t'5}.

This yields the marginal moment generating function of Z;;
Mgz, (t;) = 2exp{t;zi;8; + (1 + 62)t2/2}®{t;6;}, j=1,...,p

which is the same moment generating function as that of Z;; having the pdf (7).
Also note that (7) is equivalent to the univariate skewed normal density given by
Chen, Dey and Shao (1999). Thus (8) is immediate from the result of Chen, Dey
and Shao (1999).

Remark 1. Under the skewed multivariate probit model, the probability p;; =
Pr(Y;; = 1) = Pr(Z;; > 0) approaches 0 at the same rate as it approaches 1
for 6; = 0. When §; > 0, the probability p;; approaches 1 at a faster rate than
it approaches 0. The opposite result is obtained when §; < 0, where 1 — p;; =
Pr(Y;; = 0).

Proof. Since MS’ Y>0 (a half-normal distribution defined by (3)), the sign of (8)
mainly depends on that of 4;, i.e. the distribution of Z;; is skewed to the right
(or the left) when é; > 0 (or §; < 0).
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From Remark 1, we see that the skewed multivariate probit model (implying
the univariate skewed probit model for each Z;; marginally) accounts for different
approach rates of p;;’s by differing the values of §;’s (including some of zero 4;’s)
and takes care of correlation between Z;;’s. Therefore, if multivariate binary
response data marginally take a skewed link model as a true model, the symmetric
multivariate probit model, will be either underfitted or overfitted.

Corollary 2. Suppose A; is an interval defined by the value of y;; so that A; =
(—00,0) if yi; = 0 and A; = (0,00) if gy =1fori=1,...,nand j =1,...,p.
Then respective joint and marginal probabilities that Y; = y; and Y;; = yij,
j =1,...,p, conditioned on parameters, 3, ¥, 4 and a set of covariates z;; are

Pr(Y; = ylf,5,8) = /A /A h(Z\B, 5, 6)dZ;
- 2/%---/91 8,(£;0,0)@(a’t)dt and
Pr(Yi; = vi;18;,0;) = /I;Af(zijlﬂjaéj)dzij

_ ) Io” ®(a;B; + djwi)g(wi)dws, if yi;=1,
Jo [L — ®(x;8; + Sjw;)]g(wi)dwi, if yi; =0,
where
Q. — (—zi;Bj,00) if ;=1
? (—oo, _:E;jﬁj) if y; =0,
Proof. We see that the statements are immediate from Theorem 1 and Corollary
1.

Analytic evaluation of the probability Pr(Y; = y;|8,%,d) is not available.
Instead, in Section 3, we will give a Monte Carlo method for the evaluation.
2.2. The Likelihood Function

Let Y = (Y1,...,Y,) and X = (X1,...,X}), and let Dys = (n, Y, X) denote
the observed data then, from Corollary 2, the likelihood function for the skewed
multivariate probit model is given by

L(B,8,T|Doys) = o | WZi)B,%,8)dZ: I(o € A),
(8,3, 5| Dans) 1=II/Al /A (1B, %, 8)dZ; I(o € A) (9)
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where ¢ = (p12,P13,---1Pp—1,p) the s = p(p — 1)/2 free parameter vector in
the correlation matrix X, so that A denotes a convex solid body in the hypercub
[—1,1]* that leads to a proper correlation matrix (see Rousseeuw and Molenberghs
(1994) for more on the shape of correlation matrices). The likelihood function
shows that the skewed multivariate normal distribution, which allows for flexible
modeling of the correlation structure and rates for p;; approaching to 1, induces
the problem of evaluating the likelihood function.

Recently, developments in Markov chain Monte Carlo method has given rise
to reasonably effective method for estimation the model (cf. Gelfand and Smith
(1990), Chib and Greenberg (1996) and Albert and Chip (1993)).

Let Z = (Z1,...,Zp) and W = (w1,...,wy), and let D = (n,Y,X,Z, W)
denote complete data. Then complete data likelihood function of the parameters
(8,X,8) can be written as
L(B,6,%|D)

[|z; 1/2exp{—§(z X8 — ow;)'2” l(z,--X,ﬂ—aw,-)} (10)

!
< e

zzg > 0)I( sz =1) +I(z1] < O)I(ylj =0) }9 w; } I(o€ A),

The representation in (10) will ease computation. We demonstrate this idea
and the role of the auxiliary variables Z; and w; in the MCMC algorithms in
Section 3.

3. Markov Chain Monte Carlo Method

3.1. Posterior Simulation

Suppose that we consider a prior density p(8, , ¢) on the parameters of a given
multivariate skewed probit model and assume that 3, 8, and g are independent
in priori, so that

W(:Baé') Q) X ¢k(ﬂ;ﬂ0330—1)¢p(6; 605D0—1)¢S(Q; QOaGal)a o€ Aa

where s = p(p—1)/2 and ¢, denotes the density of a s-variate normal distribution
which is truncated to A. The hyperparameters (8y, Bo, do, Do, 00, Go) are chosen
to reflect the available prior information. The location of the prior information
is controlled by the vectors Sy, dp and gp and strength by the precision matrices
Bo, D() and Go.
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Our basic approach for fitting the skewed multivariate probit model by MCMC
method is due to Albert and Chip (1993). In this approach, the parameter
space is augmented by latent data Z and W. To sample from the posterior dis-
tribution p(B, X, d|Deps), we introduce the latent variables Z = (Z),...,Z, and
W = (wr,...,wy). Then the joint posterior distribution for A = (8,4, 0,Z,W) is
given by

p(AX,Y)

x 7(B,40) [ﬁ |72 exp {“";‘(Zi — Xif — Swi)' T (Z; — Xif - 5wi)}

i=1

x  [T{I(z5 > 0)I(ys; = 1) + I(zi; < ) (i = 0)}9(“’1’)} Ifec A). (11
j=1

Given a set full conditional posterior distributions obtained from (11), to sample
the identified parameters (£,6, ) in a MCMC method with augmentation, we
need to iterate sampling of each element of A on the following steps a large
number of times.

From (11), we see that the distributions in the first step of the MCMC sam-
pling are the univariate normal distributions

[wil}fi’ Zi7 :37 6, Q] ~

§5-1(Z; - X,8) e .
N( 1+5’2_16 ,(1+62 5) )I(wz>0), Z—l,...,n, (12)

truncated to the region R; = {w;;w; >0}, i=1,...,n.

A possible complication of the sampling could be that from truncated normal
distribution. This can be easily resolved by the algorithm of Devroye (1986). The
full conditional distribution of Z; is a truncated multivariate normal

[Zilwi, Y3, B, 6, 0] ~

P
Ny(XiB + 6w, B) [ [{I(zi5 > 0 (wij = 1) + I(zi5 < 0)I(3i; = 0)}, i=1,...,n.

j=1

’ (13)
This distribution can be simulated by the method of Geweke (1991), composing
a cycle of p Gibbs steps through the components z;; of Z;. Instead of sampling
2;j in this manner, the entire vector Z; can be sampled from [Z;|w;, Y;, X;, B, 6, 0]
by the accept-reject method of Albet and Chip (1993).
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The next two distributions for the MCMC sampling are
[B1Z, W, 6, 0] ~ Nk(B,B7), (14)
(612, W, 8, 0] ~ Np(8,D7Y), (15)

where

n n
B = B~ (Bofo + foz_l(zi —dw;)), B=Bo+ )Y X{T7'X;,
=1

i=1

n n
§ =D (Dodo + Y wiL™Y(Z; — XiB)), D=Do+ Y wiT!,

1=1 1=1
and k = 3% k.
Finally, the full conditional density of the unique elements of % is
p(olZ, X, W, B,6) x ¢s(0; 00, Gg ) F(ZIX, W, 8,6,0)I(0 € A).  (16)
where

f(Z|X, W, B,4, o) = (27r)‘"P/2|2|——n/2

n
X  exp {—% Z(Zi — X8 — bw;)T7H(Z; — XiB - 5wz‘)} :
i=1

The analysis of this density and search for suitable bounds and dominating func-
tions is difficult. Nevertheless this posterior density can be sampled by use of
Metropolis-Hastings(MH) algorithm with a proposal density described by the
random walk chain. o' = g + h where ¢’ is the candidate value, p is the current
value and h is a zero mean increment vector. It is convenient to assume that h
follows a symmetric distribution, such as multivariate normal, so that

t
(e, Qt) = min {13 %%5)'} )

where f(0) = ¢5(0; 00, G5')f(Z|X, W, B, 4, 0). Then move to o' with probability
a(o, 0') and stay at ¢ with probability 1 —a(g, o). Note that the proposal density
need not enforce the positive definiteness constraint, because that constraint is
part of f(g). In other words, when Xt is not positive definite or ¢ is not element
of A, the conditional posterior is zero, and hence proposal value is rejected with
certainty. See Chib and Greenberg (1995) for turning of the covariance matrix
of the proposal density that guarantees proper acceptance rate. In case the
dimension of ¥ is large, it is best to partition g into blocks and to apply the
Metropolis-Hastings algorithm in sequence, cycling through the various blocks
(cf. Chib and Greenberg 1996).
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3.2. Posterior Probabilities

We need to calculate the posterior predicted probability of the observed choice
of each individual:

Pr(Yizyi|ﬂ,)3,(5)=/ / MZiIB, S, 6)dZs, i=1,...,n,  (17)
4, Ja

where A;, j = 1,...,p, is the interval A; = (—00,0) if y;; = 0 and 4; = (0, 00) if
Yij = 1.

This integral can be accurately estimated by drawing a large number of Z;
values from a Monte Carlo accept-reject procedure by iterating on the following
steps for k=1,..., M,

(Algorithm 1): Given the Bayes estimates 8*, 6%, and ©*

e Step 1: Simulate wz(k) from TN(0,1)I(w; > 0), the truncated standard
normal.

o Step 2: Simulate Z*) from N,(Xi8" +6*w®, %);
e Step 3: Calculate Pr(Y; =yilZz(k),wZ(k),,B*,J*,E*).

The probability in Step 3 is 1 or 0 depending on whether Zi(k) corresponds
to the constraints (in terms of A;’s) imposed by ;. Then from the law of large
numbers,

M
M7 ST Pr(Y = 3l 20,0, 8%, 6%, 5%) = Pr(Y; = 5il8", 6%, 5. (18)
k=1

For this method to be effective, M must be large, but ensuring this is relatively
simple because the computation is done at only one point (5*,d*,L*). More-
over, Step 1 and Step 2 require only the generations of Gaussian samples. As
a by-product, estimation of the marginal predicted posterior probability of each
component of Y;, i.e.

Pr(Y;; = yi51B5,05) =/A f(zij|B;,65)dz5, i=1,...,n; j=1,...,p, (19)
i

can be obtained from the same Monte Carlo accept-reject procedure if we modify
Step 2 and Step 3 to the marginal distributions of Z;;’s and Y;;’s. For this esti-
mation, a numerical calculation (using a computer package such as Mathematica)
that directly calculates | 4, £ (25185, 67)dz; is also available.
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4. Model Comparison

In Section 2 we proposed a multivariate skewed probit link model for multi-
variate binary response data, in which asymmetry of the link is determined by 8
in (2). Therefore it is of practical interest to compare models formulated by dif-
ferent choices of 4 in (2), symmetric (usual) multivariate probit link model with
§ = 0 and an asymmetric one with J # 0. To this end, we propose a conditional
Bayes factor approach (see, e.g. Geweke 1996) to perform the model compari-
son. The approach can be made by modifying the MCMC sampling step of § in
Subsection 3.1.

The modification is as follows. Under the assumption that investigator’s prior
distributions for 4;’s, 8 and ¢ are mutually independent, we change the prior
distribution of d;, j = 1,...,p. With prior probability ¢; = P(J; = 0)

where II(-) denotes the prior c.d.f. of 0;; H(é;) =0if§; < 0and H(4;) = 1if4; >
0. Here dgj denotes jth diagonal element of Dy*. We set the prior distributions
of B and g to be the same as those used in Subsection 3.1.

To apply the conditional Bayes factor approach, we need following modifica-
tion in the fourth step of the MCMC sampling in Subsection 3.1(i.e. posterior
sampling of 4;) : Given &y (¢ # j), Z, W, § and g, define U; = Z; — X;$8 so that

U; = dw; +¢&;, € iid Np(O, ¥), (21)
¢ =1,...,n. Then the conditional distribution of §; follows from the simplified
model,

id
UijlUiqgy ~ N(wid + 835,003,
-1 -~
where Oij = Ej(\j)z(\j)(Ui(\j) ——wié(\j)), and U(zj) = I—Ej(\j)z(\})(\j)z(\j)j denote
respective conditional mean and variance of U;; obtained from (21).
The likelihood function kernel is

n

1
exp{—— Z(Uij — §jw; — eij)z}"/’(\j)’
200 i=

where )
You) = exp{=5 Wiy) = Sy By i) = e}
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Conditional on é; = 0 the value of the kernel is

1 n
exp{—%g— Z(Uij — 6:5)* M 5- (22)
(4) i=1

Conditional on d; # 0 the corresponding kernel density for d; is

n

i 1 1
(2m) P/ 2dy]! exp{—éo—%—) > (Uij — wid; — 6;5)° — 27?7(51 — 80;)* )
7) i=1 7

—p/2 — 1 - Uiz — 0::)2
= (2m) 7 dg) exp{—5[d;(8; — ;)" + 21_1(0121 i)
()

2

v gy, 23
dg. 395 15¥(\5)

j

where

n n
85 = dj [8os/d3; + Y wi(Uis — 8ij)/oly)), dj =1/d3; + 21 w} /oty
i=1 i=
Thus the conditional posterior distribution for é; # 0 is
(612, W, B,0] ~ N(é;,d;"). (24)

To calculate the conditional Bayes factor, it is necessary to integrate (23) over J;
which yields conditional marginal likelihood

n

d;mdgjld)(\j) exp{—l/z[Z(Uij - 9i1)2/0(2j) +0%;/dp; ~ d;é7)}.  (25)

Ti=1
Comparing this marginal likelihood to (22), we have the conditional Bayes
factor in favor of 6 # 0, versus § = 0, that is
BFf = d; "?dg} exp{~1/2[6%;/d3; — d;621} 5 =1,...,p. (26)

To draw ¢; from its conditional distribution, the conditional posterior probability
that §; = 0 is computed from the conditional Bayes factor (26):

q° = q;/{g; + (1 — q;) BF}. (27)

Based on a comparison of this probability with a drawing from the uniform
distribution on [0, 1], the choice J; = 0 or J; # 0 is made. Therefore modifying
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the fourth step of the basic algorithm, we have the following algorithm for the
model comparison.

(Algorithm 2): Algorithm for model comparison

e Sample w;, ¢t =1,...,n, from the conditional posterior (12);
e Sample z;, j=1,...,p and ¢t =1,...,n, from the conditional posterior
(13);

e Sample f from the conditional posterior (14);

e The parameters {;,...,0p are drawn in succession so that, for dj,
compute ¢; from BF and genmerate u from U(0,1), if u < g5, set
d; = 0. Else, sample J; from N(sj,dj‘l) ;

e Sample p from the Metropolis-Hastings algorithm in Subsection 3.1.

The model comparison could be done in the obvious way, by recording the
indicator variables for the model corresponding to the nonzero J;’s at the end of
each iteration.

5. Illustrative Examples

We now take up two examples of generalized multivariate regression with cor-
related binary responses data. The objectives in these examples are to (a) com-
pare the proposed skewed model with the multivariate probit model by Amemiya
(1985); (b) illustrate the numerical accuracy of the algorithms of the previous
sections; and (c) study the relation between prior and posterior distributions in
the proposed model.

5.1. Example 1: Artificial Data

In this example we consider a simulation with the skewed multivariate probit
model. Our primary aims here are to examine the numerical accuracy of the
algorithms and to study the relation between prior and posterior distributions
in the model. We generate multiple simulated datasets from the following 4
dimensional binary response skewed probit model :

Zi ~ Ny(XiB + 6w, X)), Yy = I(Z;; > 0), (28)
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where ¥ = {p;;} with p; = 0.5, for j # j', a intraclass correlation matrix,
w; ~ TN(0,1)I(w; > 0), and X; = diag{zi1, Ti2, Ti3, Tia}.

First, for each j(j = 1,...,4), we independently generate z;; ~ N((—1)7+1,
3),i=1,...,4, toobtain X; ¢ = 1,...,n, and take 8 = (1, —1,2, —2)’. Then using
Z; = (Zi,- - -, Zis)', we generate independent binary response variables, Y;, i =
1,...,n from (28) with § = (5, —5,2, —2)’. In the analysis, we considered various
sample size n and different set of values of the hyperparameters, By = b Iy,
Dy = by14 and Gy = b3 (for ¥ is restricted to a intraclass covariance structure).
We set the other hyperparameters, £y, do and gy, to be zero vectors.

The posterior distributions of the parameters are obtained by applying the
posterior simulation (in Subsection 3.1) for 10,000 cycles beyond 1000 burp-in
iterations. Many standard diagnostic measures (see. e.g., Cowles and Carlin,
1996) have been computed to monitor convergence by using ” CODA Output
Analysis Menu” by Best et al. (1996). Those indicated rapid convergence within
1000 burn-in iterations. For each parameter, trace of the Markov chains obtained
from twelve different starting points, appeared to settle to the same (or similar)
distribution within 1000 iterations. Gelman and Rubin shrinkage factor also
converged to 1 within 1000 iterations. Furthermore, the autocorrelations of each
parameter from the MCMC algorithm disappeared at lag less than 3. In the
Metropolis-Hasting step of the algorithm, we let the random walk proposal dens-

Y

{c) {d)

';.5 ~10 -5 $ ;0 15 -15 -10 - $ ]:0 .l‘S
Figure 1. Probability Plots (overlapped plots of (z};8;,pi;) and (2185, Piz)):
Respective solid lines in (a), (b), (c), and (d) correspond to the true probabilities,
Dil> Pi2, Pi3, and pi4. The dotted values in (a), (b), (c), and (d) are estimated values
of pi1, pi2, Pi3, and pi4, respectively.
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ity be a normal density with 0 mean and covariance matrix 7, where 7 plays
role of a tuning parameter for ensuring the acceptance rate being around .5 as
recommended by Robert, Gelman and, Gilks (1994). The value of 7 for the
sample size n = 20 was 1.5 and that of sample size n = 100 was 2.0.

The posterior distributions are summarized in Table 1, where we report the
posterior mean (the average of simulated values), numerical standard error of the
posterior mean (computed by batch means method), the standard deviation (the
standard deviation of the simulated values), the posterior median, the lower 2.5
and upper 97.5 percentiles of the simulated values.

From Table 1 it is clear that, regardless of the particular prior distributions,
the posterior simulation has accurately produced a posterior distribution concen-
trated on the values that generated data. Three systematic effects of the prior
distributions to the posterior distributions are evident. First, each posterior dis-
tribution of component of § is spread out, and its 95% credible interval dose not
include 0, which is evident for the skewed multivariate probit model.

Second, for each n, increase in values of by, £ = 1,2, slightly decreases 95%
credible intervals of the parameters. This is due to the fact that the values of the
hyperparameters effect fairly small in the estimation compared to the mass of the
likelihood function. Finally, for each set of values by, £ = 1,2, increase in sample
size n produces more accurate marginal posterior distribution of each parameter
in the sense that, for n = 100, each marginal distribution has more concentrated
mass around the true value than it does for n = 20.

To check the fit of the skewed multivariate probit model, we compare the
posterior estimate of marginal probabilities (predicted posterior means), p;; =
[0 ®(x};8; +63wi) g(wi)dw; to true probabilities p;; = [ D}, 85+ 85w;) g(w;)
dw;, j = 1,...,4, for the model (28). Here méjﬂ; and d; denote Bayesian esti-
mates. A part of the results (with n = 100 and (b1, b2,b3) = (.01,.01,0.3)) is
shown in Figure 1. From Figure 1, it can be seen that the estimated probabilities
are fairly close to the true ones. The figures also highlight the performance of
the skew multivariate probit model; they show that, in case of fitting the sym-
metric multivariate probit model to the dataset, the marginal probability plots
symmetric about 0.5 at z;,;8; = 0 would overestimate (or underestimate) the true
probabilities.
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Table 1. Summaries of the Posterior Distributions for Simulated

Model

n  Para. Mean Mum. SE SD Median Lower  Upper
(b1,b2,b3)=(.01, .01, 0.3)

20 B .9588 .0007 .0725 .9584 .8412  1.0783

B2 -1.0604 .0009 .0976 -1.0599 -1.2234  -.9013

B3 1.9630 .0006 .0642 1.9635 1.8554 2.0677

B -2.0857 .0007 .0758 -2.0851 -2.2111 -1.9606

&1 5.2713 .0021 2166  5.2706 4.9189  5.6262

d2 -4.3462 .0025 2519 -4.3474 -4.7576 -3.9312

J3 2.3958 .0027 2728 2.3956  1.9516  2.8463

04 -1.5088 .0032 3277 -1.5117 -2.0533  -.9614

Pij .5202 .0009 .0929 .5322 .3501 .6544

(b1,b2,b3)=(.1, .1, 0.3)

20 51 1.1475 .0011 1141 1.1473 9620  1.3389

B2 -1.0670 .0008 .0821 -1.0677 -1.2020 -.9328

B 1.9707 .0007 0726 19702 1.8525  2.0919

B4 -2.1140 .0006 .0609 -2.1152 -2.2124 -2.0126

41 4.8340 .0025 .2505  4.8336 4.4198  5.2529

é2 -4.9436 .0030 2054  -4.9457 -5.4265 -4.4515

d3 1.8013 0027 .2739 1.8003 1.3467  2.2494

04 -1.8554 .0030 2994 -1.8536 -2.3476 -1.3664

pjs 4419 0009 0890 4444 2028  .5818
(b1,b2,b3)=(.01, .01, 0.3)

100 B .9619 .0004 0417 9615 .8936  1.0320

B2 -.9956 .0004 .0429 -9951 -1.0670  -.9250

B3 1.9261 .0003 .0415 1.9267 1.8944  2.0603

Ba -2.0210 .0002 .0276  -2.0208 -2.0667 -1.9744

&1 4.9458 .0010 1046 4.9457  4.7735  5.1170

82 -4.9979 0012 1185 -4.9991  -5.1923  -4.8020

43 2.1165 .0013 .1249 2.1154 1.9109 2.3271

44 -1.9892 .0014 1376 -1.9886 -2.2162 -1.7652

Pijt .5227 .0004 .0395 .5252 .4558 .5830

(b1,b2,b3)=(.1, .1, 0.3)

100 Jo 1.0055 .0001 .0135 1.0054 9831  1.0276

B -.9786 .0001 .0116 -.9785  -9978  -.9594

B3 2.0073 .0001 0098  2.0073 1.9911 2.0235

B -2.0028 .0001 .0082 -2.0028 -2.0162 -1.9892

o1 4.9849 .0003 .0332 4.9852 4.9290 5.0386

82 -5.0011 .0003 .0369 -5.0014 -5.0619 -4.9397

83 1.9582 .0003 .0392 1.9579 1.8931 2.0227

04 -1.9571 .0004 .0414 -1.9567 -2.0258 -1.8891

.5130 .0003 .03701 5113 4511 5746

Pij
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5.2. Example 2: Voter Behavior Data

The data is a survey data of voting behavior collected from 95 residents of
Troy, Michigan. This example is also considered in Green (1993). The objective
of the study is to model two quantal responses as a function of covariates, allowing
for correlation in responses. The two quantal responses were recorded: Y;; = the
first decision, measured by 1 or 0 with 1 being a state of sending at least one child
to public school; Y;3 = the second, recorded on the binary (1-0) scale depending
on whether to vote in favor of a school budget.

Let the covariates in z;;; be a constant, the natural logarithm of annual
household income in dollars (INC), and the natural logarithm of property taxes
paid per year in dollars (TAX); and those in x;2; be a constant, INC, TAX,
and the number of years (Y RS) the resident has been living in Troy. So that
Ty = (.’E,‘u,INCz',TAXi)’ and T = (:L‘igl, INC,',TAX,’, YRS,')'. (See Green 1993
for a detailed discussion of this data set). The summary statistics for the data
set is given in Table 3.

Table 3. Summary of the Dataset

(Yi1,Yi2) Count Decision INC TAX YRS
(0, 0) 8 First Mean 0.109 0.302 0.352
(0, 1) 7 S.D. 0.381 0.535 0.388
(1, 0) 28 Second Mean 0.164 0.029 0.157
(1, 1) 52 S.D. 0346 0.134 0.103

We want to fit the proposed model to this data set. The bivariate skewed
probit model in which the marginal probabilities for the ¢th subject are given by

o0
Pr(Y;; = 1Bj,0,4;) = / ®(x;; 05 + 05ws)g(w;)dw;,

and the joint probabilities are given through the cdf of the bivariate normal with
correlation matrix equal to
1
2=( 9).
o 1

Thus the model contains 9 unknown regression parameters (including 4;’s) and
1 unknown correlation parameter.

First Algorithm 2 is applied to the data set for testing the skewness of the
bivariate probit model. For illustrative purpose we take Pr(d; = 0) = ¢; =
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0.5, = 1,2, as a base prior probability that each d; is excluded from the model.
To study the relation between the prior and the posterior distribution of §;’s in
conjunction with Algorithm 2, we also consider ¢; = 0.3 and g; = 0.7. In order to
reflect the vagueness of the prior information about 5, § and g, we represent our
prior distribution through the hyperparameters By = .0117, Dy = 0.0113, Gy = 2,
ﬁ0=0, 5():0, and Qo=0.

Posterior probabilities of alternative states of skewness parameters are pre-
sented in Table 4. These results are obtained from the method described in
Section 4, with m = 10* iterations of Algorithm 2 beyond 10° burn-in itera-
tions (decided based on the same convergence checkings as in Example 1). A
systematic effect of the prior distributions of g;’s on the posterior probabilities
is evident. Increases in g;, the prior probability that d; = 0, tends to favor sym-
metric probit model and vice versa. Thus giving more informative priors to §;’s
have the potential to effect our posterior inference about J;’s. From Table 4,
it can be also observed that, regardless of the particular prior distribution, the
partial Bayes factor method yields the largest posterior probability for the state
(6, = 0,09 # 0). This non-zero value of the skewness parameter do suggested
that the following bivariate skewed probit model may fit the data.

Zi ~ No(X;8+ 0w;, X), Yy =1(Zi; > 0), (29)

where 6 = (0, 62)’. We proceed to estimate the model (29) by use of the MCMC
sampling in Subsection 3.1. In the sampling process, we ignore the first mg= 1000
draws and collect the next m = 10%. These are used to approximate the posterior
distributions of 9 parameters in the bivariate skewed probit model (Skewed). It
is worth mentioning that the entire sampling process took less than 20 minutes
on 600MHz PC.

Table 4. Posterior Probabilities of States of §; and 5.

States g 03 0.5 0.7
(61 = 0,0 =0) 0.109 0.302 0.352
(61 = 0,8 # 0) 0.381 0.535 0.388
(61 # 0,65 = 0) 0.164 0.029 0.157
(61 # 0,65 # 0) 0.346 0.134 0.103

In this example, proposal values are also generated by the random walk chain,
but with 7 = 1. Summaries of the posterior distributions are contrasted with
those obtained from facilitating the bivariate probit model (Symm) and they are
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provided in Table 5. We observe that the posterior estimate of d7 is positive and
that its 95% credible interval does not include 0. This coincides with the result in
Table 4. The positive value of the skewness parameter suggests that usual probit
model may not fit the responses Y;’s obtained from the second decision. We also
note from Table 5 that when we fit Symm instead of Skewed all the posterior
means of Symm are different from those of Skewed.

Table 5. Summaries of the Posterior Distributions

Para. Model Mean Mum. SE SD Median Lower Upper

i1 Symm  -4.187 0.007 3.564  -4.202 -11.356  2.846
Skewed  -4.247 0.007 3.696 -4.217 -10.323  1.786
B2  Symm  0.068 0012 0435 0079 -0.782  0.907
Skewed  0.101 0.013 0445  0.107 -0.644 0.820
fis  Symm  0.652 0.017 0561  0.659 -0.469  1.743
Skewed  0.616 0.016 0.563  0.614 -0.299  1.550
By Symm  -0.469 0.080 3.789  -0.425 -7.889  6.846
Skewed -1.815 0.095 7.964  -1.682 -14.981 11.183
B2  Symm  1.053 0014 0437 1039 0256  1.947
Skewed  4.087 0079 2025 3912 1154 7.628
B2z  Symm  -1.382 0.016 0579  -1.356 -2.671 -0.391
Skewed  -6.147 0.094 2905 -5.845 -11.324 -1.946
B2s  Symm  -0.018 0.002 0016 -0.018 -0.043  0.012
Skewed  -0.141 0.001 0009 -0.134 -0.321 -0.001
82 Skewed  9.708 0.085 2503  9.832 5421 13.541
o Symm  0.259 0.009 0149 0275 -0.130  0.639
Skewed  0.023 0.002 0.150  0.025 -0.226  0.272

The difference is highlighted by mean and standard deviation of 4. That is, the
95% credible interval for fa4 include 0 if Symm is adopted for fitting the data,
while Skewed model does not include 0 in its interval. Therefore, we say that the
properties of the posterior estimates are not robust to the choice of models.
Finally, We compare the proposed model with the (symmetric) probit model
in terms of predicted bivariate binary responses. The predicted responses, Y;
i =1,...,n, for each model are obtained in the following procedure. First, given
the Bayes estimates in Table 5, we can calculate the posterior probabilities of
four different responses of Y; ((0,0), (0,1),(1,0), (1,1)) using Algorithm 1. Then
we take the highest probability response among them as predicted value of Y;.
An intuitively appealing way to summarize the predicted values from each fitted
model (Skewed or Symm) is via a classification table. See, Efron (1975) and
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Hosmer and Lemeshow (1989), for the use of the table as a criterion for goodness-
of-fit. The results of classifying the predicted Y;’s using each fitted model given
in Table 5 are noted in Table 6.

Table 6 notes following evidence. In comparison with the result of Skewed
model, Symm model does not performs well in predicting the second binary re-
sponse Yjs. This coincides with an implication of Table 5 that fitted model involves
significant skewness parameter in Y;,.

Table 6. Classification Table Based on the Fitted Skewed Model
(Result of the Fitted Symm Model is Listed in Parentheses).

Predicted
Observed (Y;;,Yi2) (0,0) (0,1) (1,0) (1,1) Total
(Yar,Yi2) Model

(0, 0) Skew 7 1 0 0 8
Symm G @ ©O @O @
(0, 1) Skew 1 6 0 0 7
Symm @ @ © @ O
(1,0) Skew 1 0 26 1 28
Symm (1) 0 (22) (5 (28)
(1, 1) Skew 0 2 1 49 52
Symm L G368 (42) (52)
Total Skew 9 9 27 50 95

Symm (9) (9) (28) (49) (95)

6. Concluding Remarks

This paper has presented a skewed multivariate probit model for analyzing
a correlated binary data with covariates. The model is described in terms of a
skewed multivariate normal distribution for underlying variables that are man-
ifested as discrete variables through a threshold specification. In addition, the
paper has established Bayesian techniques for analyzing the skewed multivariate
probit model from the output of posterior simulation via MCMC. Our two illus-
trative examples suggest that (i) the techniques can be applied to various binary
response data sets and to high dimensional models that are intractable by using
a frequentist method; (ii) the skewed multivariate probit model may be more
appropriate than the multivariate probit model when the number of 1’s is much
different from the number of 0’s in each component of the vectors in a correlated
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binary response data. The implication (ii) can be easily seen from Figure 1 and
Table 6.

The advantages of the proposed model can be enumerated: (i) It allows flexi-
bility to model skewness(in the sense that the skewness of the model is determined
by the data). (ii) It is analytically tractable and easily implementable from a com-
putational perspective. There are, however, a few aspects that warrant further
study. In practice, there may be other plausible choice of the distributions of
Z; and w; to get a more general skewed multivariate link model in the presence
of binary correlated data with covariates. A study pertaining to suggesting a
general skewed multivariate link model is an interesting research topic and it is
left as a future study of interest.

REFERENCES

Albert, J. and Chib, S. (1993). “Bayesian analysis of binary and polytomous
response data,” Journal of the American Statistical Association, 88, 669-
679.

Amemiya, T. (1985). Advanced Econometrics. Harvard University Press, Boston.

Ashford, J. R. and Sowden, R. R. (1970). “Multivariate probit analysis,” Bio-
metrics, 26, 535-546.

Azzalini, A. and Valle, A. D. (1996). “The multivariate skew-normal distribu-
tion,” Biometrika, 83, 715-726.

Basu, S. and Mukhopadhyay, S. (2000). Binary response regression with normal
scale mixture links, in Generalized Linear Models: A Bayesian Perspective,
eds. D. K. Dey, S. K. Ghosh, and B. K. Mallick, Marcel Dekker, New York.

Best, N., Cowles, M. K., and Vines, K. (1996). CODA; Convergence Diagno-
sis and Qutput Analysis Software for Gibbs Sampling Output, Version 3.0,
MRC Biostatistics Unit, Cambridge.

Carey, V., Zeger, S. L., and Diggle, P. (1993). “Modelling multivariate binary
data with alternating logistic regressions,” Biometrika, 80, 517-526.

Chen, M. H,, Dey, D. K., and Shao, Q. M. (1999). “A new skewed link model for
dichotomous quantal response model,” Journal of the American Statistical
Association, 94, 1172-1186.



634 Hea-Jung Kim

Chib, S. and Greenberg, E. (1996). Bayesian analysis of multivariate probit
models in MCMC Preprint Service.

Chib, S. and Greenberg, E. (1995). “Understanding the Metropolis-Hastings
algorithm,” The American Statistician, 49, 327-335.

Cowles, M. K. and Carlin, B. P. (1996). “Markov chain Monte Carlo convergence
diagnostics: A comparative review,” Journal of the American Statistical
Association, 91, 883-904.

Czado, C. (1994). “Parametric link modification of both tails in binary regres-
sion,” Statistical Papers, 35, 189-201.

Czado, C. and Santner, T. J. (1992). “The effect of link misspecification on
binary regression inference,” Journal of Statistical Planning and Inference,
33, 213-231.

Devroye, L. (1986). Non-Uniform Random Variate Generation. New-York:
Springer-Verlag.

Geweke, J. (1991). “Efficient simulation from the multivariate normal and
student-¢ distribution subject to linear constraints,” In Computer Science
and Statistics: Proceedings of the Twenty-Third Symposium on the Inter-
face, 571-578.

Geweke, J. (1996). “Variable Selection and Model Comparison in Regression,”
Bayesian Statistics 5. eds. J. M. Bernardo, J. O. Berger, A. P. Dawid, and
A. F. M. Smith, Oxford University Press, 609-620.

Gelfand, A. E. and Smith, A. F. M. (1990). “Sampling-based approaches to
calculating marginal densities,” Journal of the American Statistical Asso-
ciation, 85, 398-409.

Glonek, G. F. V. and McCullagh, P. (1995). “Multivariate logistic models,”
Journal of the Royal Statistical Society, B, 57, 533-546.

Green, W. (1993). Economic Analysis. 2nd. ed. Macmillan, New York.

Ochi, Y. and Prentice, R. L. (1984). “Likelihood inference in a correlated probit
regression model,” Biometrika, 71, 531-543.



Bayesian Analysis of Skewed Multivariate Probit Model 635

Roberts, G. O., Gelman, A., and Gilks, W. R. (1994). Weak convergence and
optimal scaling of random walk Metropolis algorithms, Technical Report,
University of Cambridge.



