• Title/Summary/Keyword: Distribution Department

Search Result 23,857, Processing Time 0.056 seconds

A Simulation Study on The Discounted Cost Distribution under Age Replacement Policy

  • Dohi, Tadashi;Ashioka, Akira;Kaio, Naoto;Osaki, Shunji
    • Industrial Engineering and Management Systems
    • /
    • v.3 no.2
    • /
    • pp.134-139
    • /
    • 2004
  • During the last three decades, a few attentions have been paid for investigating the cost distribution for the optimal maintenance problems. In this article, we derive the moment of the discounted cost distribution over an infinite time horizon for the basic age replacement problem. With first two moments of the discounted cost distribution, we approximate the underlying distribution function by three theoretical distributions. Through a Monte Carlo simulation, we conclude that the log-normal distribution is the best fitted one to approximate the discounted cost distribution.

LH-Moments of Some Distributions Useful in Hydrology

  • Murshed, Md. Sharwar;Park, Byung-Jun;Jeong, Bo-Yoon;Park, Jeong-Soo
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.4
    • /
    • pp.647-658
    • /
    • 2009
  • It is already known from the previous study that flood seems to have heavier tail. Therefore, to make prediction of future extreme label, some agreement of tail behavior of extreme data is highly required. The LH-moments estimation method, the generalized form of L-moments is an useful method of characterizing the upper part of the distribution. LH-moments are based on linear combination of higher order statistics. In this study, we have formulated LH-moments of five distributions useful in hydrology such as, two types of three parameter kappa distributions, beta-${\kappa}$ distribution, beta-p distribution and a generalized Gumbel distribution. Using LH-moments reduces the undue influences that small sample may have on the estimation of large return period events.

Some counterexamples of a skew-normal distribution

  • Zhao, Jun;Lee, Sang Kyu;Kim, Hyoung-Moon
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.6
    • /
    • pp.583-589
    • /
    • 2019
  • Counterexamples of a skew-normal distribution are developed to improve our understanding of this distribution. Two examples on bivariate non-skew-normal distribution owning marginal skew-normal distributions are first provided. Sum of dependent skew-normal and normal variables does not follow a skew-normal distribution. Continuous bivariate density with discontinuous marginal density also exists in skew-normal distribution. An example presents that the range of possible correlations for bivariate skew-normal distribution is constrained in a relatively small set. For unified skew-normal variables, an example about converging in law are discussed. Convergence in distribution is involved in two separate examples for skew-normal variables. The point estimation problem, which is not a counterexample, is provided because of its importance in understanding the skew-normal distribution. These materials are useful for undergraduate and/or graduate teaching courses.

On Distribution of Order Statistics from Kumaraswamy Distribution

  • Garg, Mridula
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.3
    • /
    • pp.411-417
    • /
    • 2008
  • In the present paper we derive the distribution of single order statistics, joint distribution of two order statistics and the distribution of product and quotient of two order statistics when the independent random variables are from continuous Kumaraswamy distribution. In particular the distribution of product and quotient of extreme order statistics and consecutive order statistics have also been obtained. The method used is based on Mellin transform and its inverse.

ON BAYESIAN ESTIMATION AND PROPERTIES OF THE MARGINAL DISTRIBUTION OF A TRUNCATED BIVARIATE t-DISTRIBUTION

  • KIM HEA-JUNG;KIM Ju SUNG
    • Journal of the Korean Statistical Society
    • /
    • v.34 no.3
    • /
    • pp.245-261
    • /
    • 2005
  • The marginal distribution of X is considered when (X, Y) has a truncated bivariate t-distribution. This paper mainly focuses on the marginal nontruncated distribution of X where Y is truncated below at its mean and its observations are not available. Several properties and applications of this distribution, including relationship with Azzalini's skew-normal distribution, are obtained. To circumvent inferential problem arises from adopting the frequentist's approach, a Bayesian method utilizing a data augmentation method is suggested. Illustrative examples demonstrate the performance of the method.

Inverted exponentiated Weibull distribution with applications to lifetime data

  • Lee, Seunghyung;Noh, Yunhwan;Chung, Younshik
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.3
    • /
    • pp.227-240
    • /
    • 2017
  • In this paper, we introduce the inverted exponentiated Weibull (IEW) distribution which contains exponentiated inverted Weibull distribution, inverse Weibull (IW) distribution, and inverted exponentiated distribution as submodels. The proposed distribution is obtained by the inverse form of the exponentiated Weibull distribution. In particular, we explain that the proposed distribution can be interpreted by Marshall and Olkin's book (Lifetime Distributions: Structure of Non-parametric, Semiparametric, and Parametric Families, 2007, Springer) idea. We derive the cumulative distribution function and hazard function and calculate expression for its moment. The hazard function of the IEW distribution can be decreasing, increasing or bathtub-shaped. The maximum likelihood estimation (MLE) is obtained. Then we show the existence and uniqueness of MLE. We can also obtain the Bayesian estimation by using the Gibbs sampler with the Metropolis-Hastings algorithm. We also give applications with a simulated data set and two real data set to show the flexibility of the IEW distribution. Finally, conclusions are mentioned.

A Distribution Automation System Simulator for Training and Research

  • Gupta R. P.;Srivastava S. C.
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.2
    • /
    • pp.159-170
    • /
    • 2005
  • This paper presents the design and development of a scaled down physical model for power Distribution Automation (DA) system simulation. The developed DA system simulator is useful in providing hands-on experience to utility engineers / managers to familiarize with the DA system and gain confidence in managing the power distribution system from the computer aided distribution control center. The distribution automation system simulator can be effectively used to carry out further research work in this area. This also helps the undergraduate and graduate students to understands the power distribution automation technology in the laboratory environment. The developed DA simulator has become an integral part of a distribution automation lab in the Electrical Engineering Department at Indian Institute of Technology Kanpur in India.

A Study on the Posterior Density under the Bayes-empirical Bayes Models

  • Sohn, Joong-K.Sohn;Kim, Heon-Joo-Kim
    • Communications for Statistical Applications and Methods
    • /
    • v.3 no.3
    • /
    • pp.215-223
    • /
    • 1996
  • By using Tukey's generalized lambda distribution, appoximate posterior density is derived under the Bayes-empirical Bayes model. The sensitivity of posterior distribution to the hyperprior distribution is examined by using Tukey's generalized lambda distriburion which approximate many well-knmown distributions. Based upon Monte Varlo simulation studies it can be said that posterior distribution is sensitive to the cariance of the prior distribution and to the symmetry of the hyperprior distribution. Also posterior distribution is approximately obtained by using the following methods : Lindley method, Laplace method and Gibbs sampler method.

  • PDF

Power Exponential Distributions

  • Zheng, Shimin;Bae, Sejong;Bartolucci, Alfred A.;Singh, Karan P.
    • International Journal of Reliability and Applications
    • /
    • v.4 no.3
    • /
    • pp.97-111
    • /
    • 2003
  • By applying Theorem 2.6.4 (Fang and Zhang, 1990, p.66) the dispersion matrix of a multivariate power exponential (MPE) distribution is derived. It is shown that the MPE and the gamma distributions are related and thus the MPE and chi-square distributions are related. By extending Fang and Xu's Theorem (1987) from the normal distribution to the Univariate Power Exponential (UPE) distribution an explicit expression is derived for calculating the probability of an UPE random variable over an interval. A representation of the characteristic function (c.f.) for an UPE distribution is given. Based on the MPE distribution the probability density functions of the generalized non-central chi-square, the generalized non-central t, and the generalized non-central F distributions are derived.

  • PDF