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Abstract. In this paper, we discuss the value distribution of the derivative of a mero-

morphic function.

1. Introduction, definitions and results

Let f be a transcendental meromorphic function defined in the open complex
plane C. Hayman ([9]) proved the following result.

Theorem A ([9]). If n(≥ 3) is an integer then ψ = fnf ′ assumes all finite values,
except possibly zero, infinitely many times.

He ([11]) also conjectured that Theorem A remains valid if n = 1 or 2. Mues
([13]) proved the result for n = 2 and the result for n = 1 was proved by Bergweiler
and Eremenko ([2]) and independently by Chen and Fang ([5]).

In 1994 Yik-Man Chiang raised the question of the value distribution of ff ′ −
a, where a = a(z) is a meromorphic function which is not identically zero and
satisfies T (r, a) = S(r, f) (cf.[3]). To answer this question Bergweiler ([3]) proved
the following theorem.

Theorem B ([3]). Let f be a transcendental meromorphic function of finite order
and let c(6≡ 0) be a polynomial. Then ff ′ − c has infinitely many zeros.

Zhang ([16]) proved the following result which is also in the direction of the
question of Chiang.

Theorem C ([16]). Let f be a transcendental meromorphic function such that
δ(∞; f) > 7/9. Then ff ′ − a has infinitely many zeros, where a( 6≡ 0, ∞) is a
meromorphic function satisfying T (r, a) = S(r, f).

Recently Yu ([15]) and the authors ([12]) treated the general case and proved
the following theorem.
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Theorem D. If f is a transcendental meromorphic function and a(6≡ 0, ∞) is a
meromorphic function satisfying T (r, a) = S(r, f) then one of ff ′ − a and ff ′ + a
has infinitely many zeros.

However the result of Bergweiler ([3]) seems to be of interest as it imposes a
restriction on the growth of the function f (in contrast to Theorem C where a
restriction on the poles is imposed) and only one target function is involved (in
contrast to Theorem D where two target functions are involved). In the paper we
see that if instead of a polynomial we choose a monomial as the target function then
in Theorem B the order restriction can be dropped. In fact we prove the following
result.

Theorem 1. Let f be a transcendental meromorphic function. Then fpf ′−azn has
infinitely many zeros, where a( 6= 0) is a constant and n is a nonnegative integer, p
is a positive integer.

Actually Theorem 1 follows as a consequence of the following result.

Theorem 2. Let Q(z) be a nonconstant polynomial having no simple zero and
P (z) = d

dz Q(z). If f is a transcendental meromorphic function then P (f(z))f ′(z)−
azn has infinitely many zeros, where a(6= 0, ∞) is a complex number and n is a
nonnegative integer.

Also Theorem 2 follows from the following theorem.

Theorem 3. Let f be a transcendental meromorphic function having no simple
zero and simple pole. Then f ′(P (z))− azn

P ′(z) has infinitely many zeros, where P (z)
is a nonconstant polynomial, a(6= 0, ∞) is a complex number and n is a nonnegative
integer.

Fang ([7]) proved the following result.

Theorem E ([7]). Let f be a transcendental meromorphic function of infinite
order. If f and f ′ have the same zeros then f ′(z)− azn has infinitely many zeros,
where a(6= 0,∞) is a complex number and n is a nonnegative integer.

Considering f(z) = exp(exp(z2)) we see that though f and f ′ have not the
same set of zeros, f ′(z)− azn has infinitely many zeros. In the following corollary
to Theorem 3 we see that if we impose a minor restriction on the poles of f , the
condition on the zeros of f can be relaxed.

Corollary 1. Let f be a transcendental meromorphic function such that zeros of
f are the zeros of f ′. If f has no simple pole then f ′(z)− azn has infinitely many
zeros, where a(6= 0, ∞) is a complex number and n is a nonnegative integer.

The Ahlfors-Shimizu characteristic function T0(r, f) of a meromorphic function
f is defined as

T0(r, f) =
∫ r

0

A(t, f)
t

dt,
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where A(t, f) = 1
π

∫∫
|z|≤t

[f#(z)]2dxdy and f#(z) = |f ′(z)|
1+|f(z)|2 .

Also we know that T (r, f) = T0(r, f) + O(1). For the standard definitions and
notations of the value distribution theory we refer to [10]. In the paper we adopt
some techniques of Bergweiler ([3]) and Fang ([7]).

2. Lemmas

In this section we present the necessary lemmas.

Lemma 1. Let f be a nonconstant rational function having no simple zero. If the
number of poles of f , if there is any, is at least two (counted with multiplicity) then
for any complex number a( 6= 0, ∞), f ′ + a has at least one zero.

Proof. If f is a polynomial then the degree of f is at least two and so f ′ is a
non-constant polynomial. Hence f ′ + a has at least one zero.

Let f = p/q, where p, q are polynomials of degree m and n(≥ 1) respectively
and p, q have no common factor.

If possible we suppose that f ′ + a has no zero. Now we consider the following
cases.

Case 1. Let m < n + 1. Then

f ′ + a =
p′q − pq′ + aq2

q2
=

R

S
, say.

Then R, S are non-constant polynomials such that degree of R = degree of S. Since
f ′ + a has no zero, it follows that R and S share zeros (counting multiplicities). So
R = AS, where A is a constant. Therefore f ′ + a = A and so f = (A − a)z + B,
where B is a constant. This is impossible because f is non-constant and has no
simple zero.

Case 2. Let m > n + 1. Then
f = r +

p1

q
,

where p1 and r are polynomials with respective degrees m1 and t(≥ 2) such that
m = t + n and m1 < n. So

f ′ + a = r′ +
p′1q − p1q

′

q2
+ a

=
(r′ + a)q2 + p′1q − p1q

′

q2

=
R1

S
, say.

Let p1 = am1z
m1 + · · ·+ a1z + a0 and q = bnzn + · · ·+ b1z + b0, where am1 6= 0,

bn 6= 0. Since the coefficient of the leading term of p′1q− p1q
′ is (m1−n)am1bn 6= 0,
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the degree of p′1q−p1q
′ is m1 +n−1. Since m1 +n−1 < 2n−1 < 2n+ t−1, we see

that degree of R1 ≥ degree of S. So as the Case 1 f becomes a linear polynomial,
which is impossible.

Case 3. Let m = n + 1. Then

(1) f = αz + β +
p1

q
,

where α, β are constants and p1 is a polynomial of degree m1 < n.
Let a + α 6= 0. Then

f ′ + a =
p′1q − p1q

′ + (a + α)q2

q2
=

R2

S
, say.

Since the degree of p′1q−p1q
′ is m1 +n−1 < 2n−1 < 2n, it follows that degree

of R2 = degree of S. So as the Case 1 f becomes a linear polynomial, which is
impossible.

Let a + α = 0. Then

(2) f ′ + a =
p′1q − p1q

′

q2
,

where the degree of p′1q − p1q
′ is m1 + n− 1.

Now we consider the following two subcases.

Subcase 3.1. Let p′1q − p1q
′ have no zero. Then m1 + n = 1 and so m1 = 0 and

n = 1 because m1 < n. So from (1) we see that

f = αz + β +
D

γz + δ
,

where γ, δ, D are constants.
This is impossible because f is non-constant and has no simple zero and has at

least two poles (counted with multiplicity), if there is any.

Subcase 3.2. Let p′1q− p1q
′ have some zero. Since f ′+a has no zero, it follows that

all the factors of p′1q − p1q
′ are factors of q2. Hence we can write

q2 = (p′1q − p1q
′)q1,

where q1 is a polynomial of degree n + 1−m1(> 0).
From (2) we get

(3) f ′ + a =
1
q1

.

Let α1, α2, · · · , αl be distinct zeros of q1 with respective multiplicities k1, k2, · · · , kl.
Since q1 is non-constant, we see that l ≥ 1.
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Since α1, α2, · · · , αl are the only poles of f ′ with respective multiplicities
k1, k2, · · · , kl, it follows that α1, α2, · · · , αl are the only poles of f with
respective multiplicities k1− 1, k2 − 1, · · · , kl − 1. Hence we get from (1) and (3)

k1 + k2 + · · ·+ kl = n + l and k1 + k2 + · · ·+ kl = n + 1−m1.

So m1 + l = 1. Since l ≥ 1, it follows that m1 = 0, l = 1 and k1 = n + 1. Therefore
from (1) we get

f = αz + β +
D

(γz + δ)n
(4)

=
(αz + β)(γz + δ)n + D

(γz + δ)n
,

where γ, δ and D are constants. Since f is not a linear polynomial, it follows that
D 6= 0. Also we see that z = −δ/γ is the only pole of f .

Let Q = (αz + β)(γz + δ)n + D. Then Q′ = (γz + δ)n−1 [α(γ + n)z + αδ + nβ].
Since f has no simple zero, it follows that a zero of f is also a zero of Q′ and so a
zero of α(γ + n)z + αδ + nβ. So f and Q have only one double zero. Hence we get
n = 1. Therefore from (4) we get

f = αz + β +
D

γz + δ
,

which is impossible because f is non-constant and has no simple zero and and has at
least two poles (counted with multiplicity), if there is any. This proves the lemma.
¤

Lemma 2 ([2]). Let f be a meromorphic function of finite order. If f has infinitely
many multiple zeros then f ′ assumes every finite nonzero value infinitely many
times.

Lemma 3 (p.60 [10]). Let f be a transcendental meromorphic function. If f has
only finitely many zeros then f ′ assumes every finite nonzero value infinitely many
times.

Combining the above lemmas we obtain the following lemma.

Lemma 4. Let f be a nonconstant meromorphic function of finite order having no
simple zero. If the number of poles of f , if there is any, is at least two (counted
with multiplicity) then for every complex number a(6= 0, ∞), f ′+a has at least one
zero.

Lemma 5 ([4], [14]). Let F be a family of meromorphic functions defined in a
domain D such that every function f ∈ F has zeros, if there is any, of multiplicities
at least k. If F is not normal at a point z0 ∈ D then for 0 ≤ α < k, there exist a
sequence of functions fj ∈ F, a sequence of complex numbers zj → z0 and a sequence
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of positive numbers ρj → 0, such that ρ−α
j fj(zj + ρjζ) converges spherically and

locally uniformly to a nonconstant meromorphic function g(ζ) on C. Moreover the
order of g is at most two and g has only zeros, if there is any, of multiplicities at
least k.

Lemma 6. Let F be a family of meromorphic functions in a domain D and a =
a(z)(6≡ 0) be a nonvanishing analytic function in D. If for every f ∈ F

(i) f has no simple zero and simple pole,

(ii) f(z) = a(z) whenever f ′(z) = a(z),

then F is a normal family.

Proof. If possible, let F be not normal at a point z0 ∈ D. Then by Lemma 5 for
α = 1 there exist a sequence of functions fj ∈ F, a sequence of complex numbers
zj → z0 and a sequence of positive numbers ρj → 0 such that gj(ζ) = ρ−1

j fj(zj+ρjζ)
converges spherically and locally uniformly to a nonconstant meromorphic function
g(ζ). Moreover g is of finite order and has only multiple zeros (if there is any). Also
we note that g has at least two poles (counted with multiplicity), if there is any.

Since a(z0) 6= 0,∞, by Lemma 4 there exists ζ0 ∈ C such that g′(ζ0) = a(z0).
Hence g′ and so g are analytic in some neighborhood of ζ0. Therefore in some
neighborhood of ζ0 gj ’s are analytic for all sufficiently large values of j and gj → g,
g′j → g′ uniformly in that neighborhood of ζ0.

First we suppose that g′j(ζ) − a(zj + ρjζ) 6= 0 for infinitely many values of j
and in some neighborhood of ζ0. Since g′j(ζ) − a(zj + ρjζ) converges uniformly to
g′(ζ)−a(z0) in some neighborhood of ζ0, by Hurwitz’s theorem we get g′(ζ)−a(z0) ≡
0 in some neighborhood of ζ0. Since g is meromorphic, it follows that g′(ζ) ≡ a(z0)
in C, which contradicts the fact that g has no simple zero.

Next we suppose that there exists a sequence ζj → ζ0 such that g′j(ζj) =
f ′(zj + ρjζj) = a(zj + ρjζj). Since fj(z) = a(z) whenever f ′j(z) = a(z), it follows
that fj(zj + ρjζj) = a(zj + ρjζj) and so ρjgj(ζj) = a(zj + ρjζj). This implies
that gj(ζj) = 1

ρj
a(zj + ρjζj) → ∞ as j → ∞, which contradicts the fact that

gj(ζj) → g(ζ0) 6= ∞. This proves the lemma. ¤

Lemma 7 ([6]). Let f be a nonconstant meromorphic function and F =
q∑

j=1

1
f−φj

,

where φj’s are meromorphic functions and T (r, φj) = o{T (r, f)} as r →∞. Then

q∑

j=1

m(r,
1

f − φj
) ≤ m(r, F ) + S(r, f).

Lemma 8 ([8]). Let f be a transcendental meromorphic function. Then for each
positive number ε and each positive integer k we have

kN(r, f) ≤ N(r, 0; f (k)) + N(r, f) + εT (r, f) + S(r, f).
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Lemma 9 ([2]). Let f be a transcendental meromorphic function of finite order.
If f has only finitely many critical values then f has only finitely many asymptotic
values.

Lemma 10 ([1]). Let f be a transcendental meromorphic function such that f(0) 6=
∞. If the set of finite critical and asymptotic values f is bounded then there exists
R(> 0) such that

| f ′(z) |≥ | f(z) |
2π | z | log

| f(z) |
R

,

for all z ∈ C\{0} which are not the poles of f .

3. Proof of the Theorems

Proof of Theorem 3. We consider the following cases.

Case I. Let f(P ) be of infinite order. Then f(P (z))/zn+1 is of infinite order.
Hence

lim sup
r→∞

T (r, f(P (z))
zn+1 )

(log r)2
= ∞ and so lim sup

r→∞

A(r, f(P (z))
zn+1 )

log r
= ∞.

Let F = {gj(z) : gj(z) = f(P (2jz))
2(n+1)jzn+1 , j = 1, 2, 3, · · · ; 1

2 < |z| < 5
2}. If possible we

suppose that F is a normal family. Then by Marty’s criterion there exists M > 0
such that

g#
j (z) ≤ M for j = 1, 2, 3, · · · ; 1 ≤ |z| ≤ 2.

Now

A(2j ,
f(P (z))

zn+1
) =

1
π

∫ ∫

|z|<2j

((
f(P (z))

zn+1

)#
)2

dxdy

=
1
π

j−1∑
m=0

∫ ∫

2m≤|z|≤2m+1

((
f(P (z))

zn+1

)#
)2

dxdy + O(1)

=
1
π

j−1∑
m=0

∫∫

1≤|z|≤2

(
g#

m(w)
)2

dξdη + O(1)

≤ 3jM2 = Kj,

where w = ξ + iη and K = 3M2.
So for any r (2j−1 ≤ r < 2j) we have

A

(
r,

f(P (z))
zn+1

)
≤ A

(
2j ,

f(P (z))
zn+1

)
≤ Kj ≤ K

(
log r

log 2
+ 1

)
,
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a contradiction. So F is not normal in 1
2 < |z| < 5

2 . Hence the family F1 = {hj(z) :
hj(z) = zn+1gj(z), j = 1, 2, 3, · · · } is not normal in 1

2 < |z| < 5
2 .

Then for a(z) = azn we see by Lemma 6 that there exists infinitely many j and
zj such that h′j(zj) = azn

j and so f ′(P (2jzj)) = a(2jzj)
n

P ′(2jzj)
. Hence f ′(P (z)) − azn

P ′(z)

has infinitely many zeros.

Case II. Let f(P ) be of finite order. First we suppose that f and so f(P ) have
finitely many zeros. Now in view of Lemmas 7 and 8 we get for b = azn

m(r,
1
f

) + m(r,
1

f ′ − b
) ≤ m(r,

1
f (2)

) + m(r,
1

f (2) − b′
)

≤ m(r,
1

f (2)
+

1
f (2) − b′

) + S(r, f)

≤ m(r,
1

f (n+2)
) + S(r, f)

= T (r, f (n+2))−N(r, 0; f (n+2)) + S(r, f)
≤ m(r, f ′) + N(r, f ′) + (n + 1)N(r, f)−N(r, 0; f (n+2)) + S(r, f)

≤ T (r, f ′) +
n + 1
n + 2

N(r, 0; f (n+2)) +
n + 1
n + 2

N(r, f) +
1

2n + 4
T (r, f)

−N(r, 0; f (n+2)) + S(r, f)

i.e.,

T (r, f)+T (r,
1

f ′ − b
) ≤ T (r, f ′)+

1
2n + 4

T (r, f)+N(r,
1

f ′ − b
)+

n + 1
n + 2

N(r, f)+S(r, f)

and so
T (r, f) ≤ (2n + 4)N(r,

1
f ′ − b

) + S(r, f).

Replacing f by f(P ) in the above inequality we get

T (r, f(P )) ≤ (2n + 4)N(r,
1

f ′(P (z))P ′(z)− b
) + S(r, f(P ))

≤ (2n + 4)N(r,
1

f ′(P (z))− azn

P ′(z)

) + S(r, f(P )),

which shows that f ′(P (z))− azn

P ′(z) has infinitely many zeros.
Next we suppose that f and so f(P ) have infinitely many zeros. Let

z1, z2, z3, · · · be the zeros of f(P ). We put g(z) = f(P (z)) − azn+1/(n + 1).
We now suppose that g′(z) has finitely many zeros, then g has finitely many critical
values. So by Lemma 9, g has finitely many asymptotic values. Without loss of
generality we suppose that g(0) = f(P (0)) 6= ∞. Then by Lemma 10 we get

|zjg
′(zj)|

|g(zj)| ≥ 1
2π

log
|g(zj)|

R
.
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Since 1
2π log |g(zj)|

R →∞ as j →∞, it follows that |zjg′(zj)|
|g(zj)| →∞ as j →∞. On

the other hand |zjg′(zj)|
|g(zj)| → n + 1 as j → ∞, a contradiction. Therefore g′(z) and

so f ′(P (z))− azn

P ′(z) has infinitely many zeros. This proves the theorem. ¤

Note 1. If we suppose that f is a transcendental meromorphic function of finite
order having no simple zero then similar to Case II of the above proof we can prove
that f ′(P (z))− Q(z)

P ′(z) has infinitely many zeros, where Q(z)( 6≡ 0) is a polynomial.

Proof of Theorem 2. Since Q(f(z)) has no simple zero and simple pole, by Theorem
3

P (f(z))f ′(z)− azn =
d

dz
Q(f(z))− azn

has infinitely many zeros. ¤

Proof of Theorem 1. Theorem 1 follows from Theorem 2 if we choose Q(z) = zp+1

p+1 .¤
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