Communications of the Korean Statistical Society
2009, Vol. 16, No. 4, 647-658

LH-Moments of Some Distributions Useful in Hydrology
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Abstract

It is already known from the previous study that flood seems to have heavier tail. Therefore, to make predic-
tion of future extreme label, some agreement of tail behavior of extreme data is highly required. The LH-moments
estimation method, the generalized form of L-moments is an useful method of characterizing the upper part of
the distribution. LH-moments are based on linear combination of higher order statistics. In this study, we have
formulated LH-moments of five distributions useful in hydrology such as, two types of three parameter kappa
distributions, beta-« distribution, beta-p distribution and a generalized Gumbel distribution. Using LH-moments
reduces the undue influences that small sample may have on the estimation of large return period events.

Keywords: Beta-«x distribution, beta-p distribution, generalized Gumbel distribution, L-moment,
probability weighted moment, three parameter kappa distribution.

1. Introduction

Over the past few decades, main concern goes to characterize the extreme events such as heavy rain-
fall, maximum wind speed, snowfall, earth quake due to their destructive nature for human life and
wealth (Coles, 2001; Park and Jung, 2002). Therefore, to judge the closeness of an observed sample
to a postulated distribution, sample moment statistics, particularly, skewness and kurtosis were used
previously. But these statistics were found insignificant to anticipating heavy return events, specially
for small or moderate sample (Hosking and Wallis, 1997). So, an alternative approach was introduced
by Hosking (1990) as an product moments for characterizing distributions and data, which are known
as L-moments. These L-moments are analogous to the conventional moments but can be estimated by
linear combinations of the elements of an ordered sample that is, by L-statistics (Hosking and Wallis,
1997).

In recent hydrological practice, the application of L-moments are become the most frequently
used tool for predicting large return period events since 1990 due to its advantage over conventional
moments (Hosking, 1990). And according to Hosking and Wallis (1997), the method of L-moment
estimation is also less subject to bias, especially for small to moderate sample size, compared to the
maximum likelihood method. Naturally, in statistical analysis of extreme events, it is often conducted
of predicting large return period events therefore, more relevant to the analysis are the upper part of
the distribution but product moments and moment ratios are being highly sensitive to the upper part of
the distributions. To overcome this problem, Wang (1997) has introduced LH-moments(Higher order
L-moments). LH-moments is the generalized form of L-moments which characterizes the upper part
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of the distributions and larger events in data. LH-moments calculation intentionally ignore the lower
part of the data due to give more emphasis on upper part of the data for anticipating future extreme
label. Recently, LH-moments estimation method has become the most popular method in hydrology
(Meshgi and Khalili, 2009; Lee and Maeng, 2003).

In this study, we have formulated LH-moments for five distributions useful in hydrology such as
Mielke-Johnson’s three parameter kappa distribution(K3D), three parameter kappa type-II distribution
(K3D-II), beta-« distribution, beta-p distribution and a generalized Gumbel distribution(GGD).

2. Distributions and Quantile Functions
2.1. Mielke-Johnson’s kappa distribution

The kappa distribution, a family of positively skewed distribution was introduce by Mielke (1973) and
Mielke and Johnson (1973). It has received a good attention from hydrological point of view such
as, stream flow of a river, rainfall data. The three parameter kappa distribution(K3D) was introduced
by Mielke and Johnson (1974). The probability density(pdf), the cumulative distribution(cdf) and the
quantile function of K3D are given as, for x > 0, o,8,6 > 0,

o
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respectively. The K3D is characterized by the three parameters ¢, 8 and 6. Where, 3 is scale and a, 6
are the shape parameters. When 6 = 1 the K3D is changed to two parameter kappa distribution (K2D;
Mielke, 1973; Oh et al., 2007). In this case, « is the only shape parameter.

2.2. Three parameter kappa type-Il distribution

Another type of three parameter kappa distribution(K3D-II) was suggested by Park et al. (2009)
which is not the same as that of Mielke and Johnson (1974). In this distribution, a new location
parameter y is introduced to the K2D. The pdf, cdf and the quantile function of K3D-II are given as,
forx>0, a,>0, u< llzliigl(x,-),
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F(x) = (J"%"){m(";“) } (2.5)
F)= (“Fa % 0<F<l (2.6)
XF)=p+B\ 17 - ; .

respectively. Where 1, a and B are the location, shape and scale parameters respectively.
Mielke-Johnson’s K3D and K3D-II are special cases of a four parameter kappa distribution (Hosk-
ing, 1994; Park and Kim, 2007).
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2.3. Beta-« distribution

The beta-« distribution is the reparameterized version of a kappa distribution (Mielke and Johnson,
1974) which has been used for testing changes in extreme rainfall events (Mason ef al., 1999). The
pdf, cdf and quantile function of beta-« distribution are respectively, for x > 0, «,8,6 > 0,

af {x\¥! x\? b
fx) = 7 (E) {1 + (5) } , Q.7
X o X 0~
F(x) :(5) {1 +(E) } , (2.8)
FiOY
x(F):ﬂ(l FlJ , 0<F<l1. (2.9)

2.4, Beta-p distribution
The pdf and cdf of beta-p distribution (Meilke and Johnson, 1974) are

ab\ [ x\"! x\? )
flo) = (F)(B) {1 + (E) } , x>0, (2.10)
9 -
Fx) =1 —{1 +(§) } . x>0, Q.11

respectively, where 0 < «, 0 < 8, 0 < 6. The quantile function is

X(F)=p{(1-F)s —1}%, 0<F<l. 2.12)

The beta-p distribution is also known as a special case of Pareto-type distribution (Johnson and Kotz,
1970).

The beta-« and beta-p distributions are specific restricted versions of the generalized beta distribu-
tions of the second kind. Wilks (1993) examined the performances of nine three parameter distribu-
tions to the 13 annual extreme and partial duration data sets of United States (Oztekin, 2007). Wilks
(1993) found that the beta-« distribution best described the extreme right tail of annual extreme series,
and the beta-p distribution was best for the partial duration data.

2.5. A generalized Gumbel distribution

A generalized Gumbel distribution(GGD) is a special case (k = 0) of a four parameter kappa distri-
bution (Hosking, 1994). This distribution has not been investigated by researchers. The pdf, cdf and
quantile function of a GGD (Jeong, 2009) are, for x > 0 and a > 0,

_ i x—£ Ik
Fx) = Eexp(—T)F(A)I , 2.13)

F(x) = {1 — hexp (~f-c—_y-§)}h : 2.14)
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_ ph
F), if >0,

& - alog(1
x(F) = (2.15)

-h .
§+alog(m), if h<O,
for 0 < F < 1, where &, a and h are the parameters of location, scale and shape respectively, and under

the restriction £ + alogh < 1m‘in (x;) for h > 0. When h < O the cdf (2.14) is also exist without any
<i<n

restrictions. When 4 — 0, the pdf of GGD changes to the pdf of Gumbel distribution. More details on
GGD are available in Jeong (2009).

3. LH-Moments

For a given sample of size m drawn from a distribution F(x) = Pr(X < x), the expectation of an order
statistic can be written as

E[X;m] = (J—I#W fo 1 X(F)F\(1 — Fy™dF. (3.1)
The first few LH-moments(Higher order L-moments) are defined by Wang (1997) for n=0,1,2,...
A} = E[Xgsven] (32)
A = %E [X(r]+2):(r]+2) - X(n+1):(q+2)], 3.3)
4 = %E [Xonare3) = 2Xgsnte + Xy | 34
A = %E [X<'7+4>:<n+4> = 3Xe3xrea) + 3Xge2y:pe4) = X(n+1):(n+4)] . (3.5)

According to Wang (1997), /1'1’ is denoted as the expectation of the largest variable in a sample of size
(n+ 1), which is a measure of location of a distribution; /lg is the one half times the difference between
the largest and the second largest variables in a sample of size (n + 2), characterizes the spreadness
of the upper part of a distribution; /1'3’ is considering the expectations of the largest three variables in
a sample of size (7 + 3); and /IZ provides the measure of pickness of the upper part of a distribution
of the largest four variables in a sample of size (7 + 4). LH-moments are also called L1 moments, L2
moments and so on respectively. When n = 0, LH-moments become identical to Hosking’s (1990)
L-moments. As 7 increases, LH-moments reflects more and more characteristics of the upper part of
the distribution (Wang, 1997).

Let us suppose, X1y, X(2), . - - , X() be the ordered sample, the following equation can produce the
" order sample LH-moments (Wang, 1997);

= ( 1 ) Z(’;l) Xo), (3.6)
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where (’;’) =m!/j!i(m - j)! and is equal to zero when j > m.

4. Probability Weighted Moments, L- and LH-Moments

For the efficient calculation of LH-moments, the so-called probability weighted moments(PWMs) are
described. Suppose X be a real valued random variable with distribution function F. According to
Greenwood et al. (1979), the PWMs of X is defined by

Myrs = E[IXP{FQOY {1 - FX)Y] = fo{F(x)}’{l - F(x)) dF(x), 4.1)

where, p, r and s are real numbers. The above definition of PWMs is valid both for continuous and
discrete random variables. For the quantile function x(F), we have

1
Mps = f {(x(F))PF'(1 - F)’ dF. 4.2)
0

One approach of the PWM is to work with M09, p = 1,2,..., which are the conventional noncentral
moments of X. We will instead work with the moments M|, into which X enters linearly and in
particular with the quantities

@ =My, = E[X{1-FX)Y], r=0.1,..., (4.3)
Br=M,0=EX{FX)})], r=0,1,.... 4.4)

Historically, PWMs are the precursor of L- and LH-moments. Hosking (1990) defined L-moments as
a linear combination of PWM:s:

A= (=1 Y P = Y Pl B forr=0.12,..., 4.5)
k=0 k=0
with P}, = (—1)’_"(;)(':’(), which is called as the shifted Legendre polynomials. The “L” in L-
moments emphasizes the construction of L-moments from linear combinations of order statistics. In
(4.5), A is the measure of location; A, is a measure of scale; A3 is a measure of skewness and 1, is
a measure of kurtosis, respectively. The L-moment ratios are defined as T2 = A3/A;, 73 = A3/A; and
T4 = A4/ Az which represents L-CV, L-skewness and L-kurtosis respectively.

The relation between normalized PWMs and LH-moments are useful to derive population LH-
moments of those distribution which PWMs are already exits (Wang, 1997). The normalized PWMs
are defined as in two forms:

1 1
B, = f X(F)FdF | f F'dF
0 0

1
=(r+1) f XF)FdF = (r + )B,, (4.6)
0

1 1
A, = f x(F)(l—F)’dF/ f F'dF
0 0

1
=(r+1)f x(F)(1-FYdF = (r+ Day, (4.7)
0
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where 8, and a,, given in (4.3) and (4.4), are called as the standard PWMs (Greenwood et al., 1979).
Now substituting (3.1) into (3.2)~(3.5) yield useful relation between LH-moments and normalized
PWMs:

1
A=B, A= 71+ D[Bys1 — By, (4.8)
8= D4 418y - 200+ By + 1+ 2By, 49)
4
2= 210+ 6+ )Byes - 307 + S + DBy

+3( + 4@ + 3Byt — (0 + 3@ + DB, (4.10)

The above formula (4.8)~(4.10) are actually used in deriving LH-moments(see Appendix). Here it
is also noticeable that, LH-moment of order 2 or above, the sum of the coefficients on the right-hand
side of the equations is always zero.

5. LH-Moments Calculation for Some Distributions
5.1. Mielke-Johnson’s kappa distribution
The normalized PWMs of K3D is obtained for r = 1, 2, ..., under the restriction ¢ 6 > 1,

(6.1)

0+1 af-1
B,=(r+1)ﬁaa_]9’1B(r0+ e )

ad  ab

where B( ) is a beta function. The derivations of PWMs and first LH-moment from the distributions
of Section 2.1 to 2.5 are provided in Appendix. Now substituting (5.1) into (3.2) to (3.5) yield

AT =+ Daw"'X,, (5.2)
A= (—"—”)fL*l [(7+2)X2 — (i + DX4], (5.3)
A= %[Vdg -2V3Xz + VaXi], (5.4)
A= (E%W[W(,XL; —3Ws X3 + 3W4X, — WaXi], (5.5)

where, X; = B((n8 + k6 + 1)/(ah), (@b — 1)/(a)), fork = 1,2, 3,4, and under the restriction, @ @ > 1.
AlsoW;=(m+D)(n+i-Dn+i-2)fori=3,4,56and V; =@+ Hn+ j—1)for j=2,3,4.

5.2. Three parameter kappa type-1l distribution
The normalized PWMs of K3D-1I is for r = 1,2, ..., under the restriction @ > 1,

(5.6)

+2 a-1
B,=p+(r+1)ﬁa%-13(r "—)
a a

The first four LH-moments of K3D-II are

A = p+ @+ D' 1, (5.7)
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2)Bae!

0= T2 2p - g+ Y], (5.8)
3)Ba=""!

A= (’7—+—3)"8L—[V4Y4 —2V3Y5 + VoPal, (5.9
, 4)Bai!

Al = (iij"‘l_[wds —3WsYy + 3W,Y3 — WiYs], (5.10)

where Y, = B((n + k)/a, (@ — 1)/a) for k = 2,3,4, 5, under the restriction, & > 1.

5.3. Beta-« distribution

The normalized PWMs of beta-« distribution is, for r = 1,2, ...,

-1
B, =+ 1),80:3(-61} +ra+a, QT)’ 5.1

under the restriction 8 > 1. First few population LH-moments of beta-« distribution are obtained by

Al = (n + Dez, (5.12)
4 = ﬁ——a@; 2+ 22~ @+ 1. -13)
A = fﬂ%@ [VaZs — 2V3Zy + VaZi], G.14)
Al = @-(z'ﬂ (WeZy — 3WsZs + 3W, 2, — 3W3Z4], (5.15)

under the restriction 8 > 1, where, Z; = B(anp + 1/0 + ka, (6 - 1)/6) fork =1,2,3,4.

5.4. Beta-p distribution

The normalized PWMs of beta-p distribution (Mielke and Johnson, 1974) are calculated from the
second form of normalized PWM A, given in (4.7)(see Appendix). Its are, for r = 1,2,...,

1 A
Ar=(r+ Dpa B(ar—-(l;+01, 1+5), (5.16)

under the restriction @f > 1/(r + 1). The LH-moments of beta-p distribution are obtained as, under
the restriction a8 > 1{(5 + 1),

AT = (1 + 1)BaP, (.17
= A +22 B+ )Py~ + 2P, (5.18)
8= WPy, p s, Vb, (5.19)
= @ +4‘:)“’8 [W3P; — 3W,4P; + 3WsP3 — WePyl, (5.20)

where P; = Blan—~1/8 +ia, (6 +1)/6),fori=1,2,3,4.
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5.5. A generalized Gumbel distribution

The calculation of LH-moments of a GGD are divided into two parts according to 4 > 0 and # < 0.

CaseI: 1 > 0.
The normalized PWMs of generalized Gumbel distribution for r = 1,2, ... are
B, =.§+a[‘~l’(£ + % 4 1)—‘1’(1)]+alogh, (521)

where ¥ is a digamma function(¥(x) = d log I'(x)/dx) and ¥(1) is the Euler’s constant(= 0.577215665).
The first four LH-moments of GGD for £ > 0 are,

A= ¢+ Ny - W(1)] + elogh, (5.22)
A = “(’72+ 2N, - Nol, (5.23)
2= 2Dty + N, - 260+ N, + (1 + Do), (5.24)
Pl - D [VeNs = 3VsN; + 3VaN; - VaNol, (5.25)

where N; =¥ (7 + i)/h+ 1/h+ 1) fori =0,1,2,3 and V; = (7 + j)(n + j — 1) for j = 3,4,5,6.

Casell: 1 < 0.
Again the normalized PWMs of GGD forr = 1,2,. .., are

B =é+a [\1}(%’ - %) - ‘I’(l)] + alog(~h). (5.26)
First four LH-moments for % < O are given by
AT = £+ alMy — ¥(1)] + alog(~h), (5.27)
1 =24 . 2 (M, - Mo, (5.28)
A = "(”; 3 {1+ H)My — 27 + M, + (7 + DM, (5.29)
1= - D (VeMs - 3VsMs + 3V,M, - Vo), (5.30)

where M; = ¥ (i — j)/h — 1/h) for j = 0,1,2, 3.

6. Concluding Remarks

LH-moments are based on linear combinations of higher order statistics. In this study, we have de-
rived the LH-moments of Mielke-Johnson’s three parameter kappa distribution, three parameter kappa
type-II distribution, beta-k distribution, beta-p distribution and a generalized Gumbel distribution for
statistical use of convenience. The distributions have been useful in hydrology, especially for the
frequency analysis in which estimating the high return value is important. Parameters can be esti-
mated by matching population LH-moments to the corresponding sample LH-moments. In future, we
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will show the parameter estimation from LH-moments of a four parameter kappa distribution (Hosk-
ing, 1994; Park and Kim, 2007) and Wakeby distribution (Park et al., 2001) which are also useful
in hydrology. In addition, we will carry out the Monte Carlo study to select the best value of 7 and
investigate the effect of using LH-moments on high quantile estimation.

Appendix: Derivation of PWMs and First LH-Moment
A.1: Mielke-Johnson’s kappa distribution
The probability weighted moments(PWMs) with the first LH-moment of Mielke-Johnson’s K3D are

1
B, = =(n+ 1)f x(F)F" dF

~(n+l)f( a) F' dF

=+ 1)Bam! f 255 Y1~ 2)1dZ  (by letting, F* = Z)
0

1)6+9+1’a€—-1 Caf> 1.
af b

= @+ Dpaw™! B(

Now substituting r = 7+ 1, n + 2and 5 + 3 into (4.6) yield B,.1, By, and By,3 which will provide
A;, A7 and A] respectively.

A.2: Three parameter kappa type-I! distribution
The PWMs and first LH-moment of K3D-II are

i o
B,,:,l'}:(nJrl)f u+,8( oF G)F"dF
A _
=p+(+ 1)/30!"1f F-l(1-2)F1dZ  (by letting, F* = Z)

2
—.U+{7]+1)ﬁaf_"13(n+ ,aa ), a> 1
a

Similarly, 27, A7 and 2] are calculated like A.1.

A.3: Beta-« distribution
The PWMs and the first LH-moment of beta-« distribution are

, 1 Fi 5 ,
B,y=/11=(7]+1) B -| F1dF
0 1~ Fs

! 1
=+ 1fa f zorome=l(1 —7yT 1 dZ  (by letting, F= = Z)
0

8-1
~(n+1)/3aB(l+my+ar 5 ) 6>1.



656 Md. Sharwar Murshed, Byung-Jun Park, Bo-Yoon Jeong, Jeong-Soo Park

A.4: Beta-p distribution

To calculate PWMs and LH-moments of beta- p distribution, we use the normalized PWM A, given in
(4.7), because calculating the explicit form of B, is difficult. Since @, and B, are interchangeable, the
following relation between PWMs and LH-moments is derived from (4.8)~(4.10):

1= A,

A= %(n +2)[Ay - Apa],

3
A= (”; 207+ 2, = 200+ ger + 0+ Ddgea)
4
4 = (n4+' M7+ 330+ DAy = 361+ 90+ Dyt + 307+ S+ DAgez = (7 + 6)1 + HApea]

Using the above relations, the PWM and the first LH-moment of beta-p distribution are

1
Ay =/l'1’ =7+ l)f x(F)(1 - Fy" dF
0

1 3
=(n+1)f,3[ ! , —1] (1 - F)"dF
o La-F)s

1
:(77+1),Baf Zie-irel() _ 7)1 g7 [by letting, (1 - F)i = Z]
0

1 1 1
=(r]+1),BaB(a7]—5+a/,l+§), (19>n+—1.

A3, A and A] are calculated in similar way like A.1.

A.5: A generalized Gumbel distribution

Casel: 1 > 0.
The PWMSs of a GGD are

1 _ Ik
B,,:,1'17=(q+1)f [f—alog(l hF )]F"dF
0

1
=&—a(n+ 1)f log(1 — F®)F" dF + alogh
0

Do :
:f—a(n; ).fo‘ uT“llog(l—u)du+aflogh [by letting F" = u]

=§+a[\?(”—;l T 1)—\1/(1)] +alogh,

A}, 4] and 2] can be obtained in similar way like A.1.

Casell: 1 < 0.
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The PWMs with first LH-moment of GGD are

! —h
Bx;:/l?=(7?+1)fo [§+alog(F&_l)}F”dF
_ __(77-1»1)01
=¢ -

fA+B-C},

where,
! 71
A= f log(—h) Wi [by letting, F' = u]
0
1 7_1 1 q_1 1
B=| (loguwu i !du, C= f log(1 —uw) u™ 75" du.
0

Now equating A, B and C by using the following formula (Gradshteyn and Ryzhik, 1980)(p. 538 and

558):
fol ¥ lnx(1-xydx= % B(’%,v) [‘P(g)—-‘l’(é— +v)],
fﬁl #n(l-x)dx= _i[%‘ + D=1,

where WV is a digamma function, we have the first LH-moment of GGD for h < 0;

M=étra [‘P (-Z- - %) - \1!(1)] + alog(~h).

A3, 2} and 2] are calculated in a similar way.
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