• Title/Summary/Keyword: Distributed temperature sensor

Search Result 78, Processing Time 0.035 seconds

Fabrication and Performance Evaluation of Thin Film RTD Temperature Sensor Array on a Curved Glass Surface (곡면 유리 표면 위에서 박막 측온저항체 온도센서 어레이 제작 및 성능 평가)

  • Ahn, Chul-Hee;Kim, Hyoung-Hoon;Park, Sang-Hu;Son, Chang-Min;Go, Jeung-Sang
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.2
    • /
    • pp.34-39
    • /
    • 2011
  • This paper presents a novel direct fabrication method of the thin metal film RTD temperature sensor array on an arbitrary curved surface by using MEMS technology to measure a distributed temperature field up to $300^{\circ}C$ without disturbing a fluid flow. In order to overcome the difficulty in the three dimensional photography of sensor patterning, the UV pre-irradiated photosensitive dry film resist technology has been developed newly. This method was applied to the fabrication of the temperature sensor array on a glass tube, which is arranged parallel and transverse to a main flow. Gold was used as a temperature sensing material. The resistance change was measured in a thermally controlled oven by increasing the environmental temperature. The linear increase in resistance change and a constant slope were obtained. Also, the sensitivity of each RTD temperature sensor was evaluated.

Development of optical temperature distribution measurement system for Underground Power Transmission tunnel (지중선로의 분포 온도 측정 시스템 개발)

  • Lee, Keun-Yang;Song, Woo-Sung
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.766-768
    • /
    • 1998
  • Optical Temperature Distribution measurement System (OTDS) is completely different from conventional electric point sensor in that it uses the optical fiber itself as the sensor. This new concept in temperature measuring system requires only one fiber to be laid. The use of optical fiber also gives the advantage of small diameter, light weight, explosion resistance, and electromagnetic noise resistance. The OTDS is a sensor which is capable of making a precise measurement over a wide range of areas using only a single optical fiber. Since current temperature sensors, such as the thermocouple, are only used to measure temperaturea of point, they are almost impractical for measuring a wider range because of the extremely high cost. In comparision with current sensors, the optical fiber distributed temperature sensor can make much quicker and more precise measurements at a comparatively low cost.

  • PDF

A Study on the Comparison between an Optical Fiber and a Thermal Sensor Cable for Temperature Monitoring (온도 모니터링을 위한 광섬유 센서와 온도센서 배열 케이블의 비교 연구)

  • Kim, Jung-Yul;Song, Yoon-Ho;Kim, Yoo-Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.4
    • /
    • pp.15-24
    • /
    • 2007
  • Two kinds of temperature monitoring technology have been introduced in this study, which can measure coincidently temperatures at many points along a single length of cable. One is to use a thermal sensor cable comprizing of addressable thermal sensors. The other is to use an optic fiber sensor with Distributed Temperature Sensing (DTS) system. The differences between two technologies can be summarized as follows: A thermal sensor cable has a concept of "point sensing" that can measure temperature only at a predefined position. The accuracy and resolution of temperature measurement are up to the capability of the individual thermal sensor. On the other hand, an optic fiber sensor has a concept of "distributed sensing" because temperature is measured practically at all points along the fiber optic cable by analysing the intensity of Raman back-scattering when a laser pulse travels along the fiber. Thus, the temperature resolution depends on the measuring distance, measuring time and spatial resolution. The purpose of this study is to investigate the applicability of two different temperature monitoring techniques in technical and economical sense. To this end, diverse experiments with two techniques were performed and two techniques are applied under the same condition. Considering the results, the thermal sensor cable will be well applicable to the assessment of groundwater flow, geothermal distribution and grouting efficiency within about loom distance, and the optic fiber sensor will be suitable for long distance such as pipe line inspection, tunnel fire detection and power line monitoring etc.

Temperature Compensation of a Strain Sensing Signal from a Fiber Optic Brillouin Optical Time Domain Analysis Sensor

  • Kwon, Il-Bum;Kim, Chi-Yeop;Cho, Seok-Beom;Lee, Jung-Ju
    • Journal of the Optical Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.106-112
    • /
    • 2003
  • In order to do continuous health monitoring of large structures, it is necessary that the distributed sensing of strain and temperature of the structures be measured. So, we present the temperature compensation of a signal from a fiber optic BOTDA (Brillouin Optical Time Domain Analysis) sensor. A fiber optic BOTDA sensor has good performance of strain measurement. However, the signal of a fiber optic BOTDA sensor is influenced by strain and temperature. Therefore, we applied an optical fiber on the beam as follows: one part of the fiber, which is sensitive to the strain and the temperature, is bonded on the surface of the beam and another part of the fiber, which is only sensitive to the temperature, is located nearby the strain sensing fiber. Therefore, the strains can be determined from the strain sensing fiber while compensating for the temperature from the temperature sensing fiber. These measured strains were compared with the strains from electrical strain gages. After temperature compensation, it was concluded that the strains from the fiber optic BOTDA sensor had good coincidence with those values of the conventional electrical strain gages.

Hydrogen Sensor Based on Palladium-Attached Fiber Bragg Grating

  • Lee, Sang-Mae;Sirkis, Jim-S.
    • Journal of the Optical Society of Korea
    • /
    • v.3 no.2
    • /
    • pp.69-73
    • /
    • 1999
  • This paper demonstrated the performance of a palladium wire hydrogen sensor based on a fiber Bragg grating as a means of developing a quasi-distributed hydrogen sensor network capable of operating at cryogenic temperatures. The new approach employing a fiber Bragg grating based palladium hydrogen sensor described in this study is advantageous over other traditional hydrogen sensors because of the multiplexing capability of fiber Bragg gratings. The sensitivity of the hydrogen sensor at room temperature is approximately 2.5 times that of the hydrogen sensor at cryogenic temperatures.

Accuracy improvement of FBG temperature sensor system for usage in electric power systems (전력 시스템 보호를 위한 광섬유 격자 온도센서의 정밀도 개선)

  • Lee, Hyun-Wook;Lee, Jun-Ho;Song, Min-Ho
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.421-425
    • /
    • 2005
  • A distributed FBG temperature sensor system was constructed for the use in protection of electric power system. A F-P wavelength tunable filter is used converting temperature-induced wavelength variations to temporal peak locations. We used Gaussian line-fitted algorithm to alleviate the error caused by quantization and electrical noises. The experimental results showed much better accuracy than the raw peak-detection scheme.

  • PDF

Temperature Compensation of a Fiber Optic Strain Sensor Based on Brillouin Scattering

  • Cho, Seok-Beom;Lee, Jung-Ju;Kwon, Il-Bum
    • Journal of the Optical Society of Korea
    • /
    • v.8 no.4
    • /
    • pp.168-173
    • /
    • 2004
  • Brillouin scattering-based fiber optic sensors are useful to measure strain or temperature in a distributed manner. Since the Brillouin frequency of an optical fiber depends on both the strain and temperature, it is very important to know whether the Brillouin frequency shift is caused by the strain change or temperature change. This article presents a temperature compensation technique of a Brillouin scattering-based fiber optic strain sensor. Both the changes of the Brillouin frequency and the Brillouin gain power is observed for the temperature compensation using a BOTDA sensor system. Experimental results showed that the temperature compensated strain values were highly consistent with actual strain values.

Simulation of Distributed Optical Fiber Sensors Using Spatially-Selective Brillouin Scattering (공간 선택적 브릴루앙 산란을 이용한 분포형 광섬유 센서의 시뮬레이션)

  • Yun, Seung-Chul;Seo, Min-Sung;Park, Hee-Gap
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.2
    • /
    • pp.127-135
    • /
    • 2006
  • We implement numerical simulations for the distributed optical fiber sensor system that uses the spatially-selective Brillouin scattering, by treating the superposition of the optical-frequency-modulated pump/probe waves in the time domain. We obtain temporal and spatial distributions of Brillouin gain for various cases. Simulations are applied to the case of concatenated optical fibers of different kinds and the case of distributed temperature along the fiber, which give reasonable results for the distributed sensor. The result of using a triangular wave instead of a sinusoidal one as a modulation waveform shows that the triangular wave modulation has an advantage in spatial resolution.

Measurement of Distributed Temperature and Strain Using Raman OTDR with a Fiber Line Including Fiber Bragg Grating Sensors (광섬유 브래그 격자 센서가 있는 광섬유 라인에 라만 OTDR을 이용한 분포 온도 및 변형률 측정 가능성에 대한 연구)

  • Kwon, Il-Bum;Byeon, Jong-Hyun;Jeon, Min-Yong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.6
    • /
    • pp.443-450
    • /
    • 2016
  • In this study, we propose a novel fiber optic sensor to show the measurement feasibility of distributed temperature and strains in a single sensing fiber line. Distributed temperature can be measured using optical time domain reflectometry (OTDR) with a Raman anti-Stokes light in the sensing fiber line. Moreover, the strain can be measured by fiber Bragg gratings (FBGs) in the same sensing fiber line. The anti-Stokes Raman back-scattering lights from both ends of the sensing fiber, which consists of a 4 km single mode optical fiber, are acquired and inserted into a newly formulated equation to calculate the temperature. Furthermore, the center wavelengths from the FBGs in the sensing fiber are detected by an optical spectrum analyzer; these are converted to strain values. The initial wavelengths of the FBGs are selected to avoid a cross-talk with the wavelength of the Raman pulsed pump light. Wavelength shifts from a tension test were found to be 0.1 nm, 0.17 nm, 0.29 nm, and 0.00 nm, with corresponding strain values of $85.76{\mu}{\epsilon}$, $145.55{\mu}{\epsilon}$, $247.86{\mu}{\epsilon}$, and $0.00{\mu}{\epsilon}$, respectively. In addition, a 50 m portion of the sensing fiber from $30^{\circ}C$ to $70^{\circ}C$ at $10^{\circ}C$ intervals was used to measure the distributed temperature. In all tests, the temperature measurement accuracy of the proposed sensor was less than $0.50^{\circ}C$.

Sensor Nodes Localization for Temperature Distribution Measurement System

  • Ohyama, Shinji;Alasiry, Ali Husein;Takayama, Junya;Kobayashi, Akira
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1781-1786
    • /
    • 2005
  • In sensor network systems, all the nodes are interconnected and the positional information of each sensor is essential. To measure the temperature, position detection and communication functions are required. Many sensor nodes are distributed to a measurement field, and these sensors have three main functions: they measure the distance to the other nodes, the data of which are used to determine the position of each node; they communicate with other nodes; and they measure the temperature of each node. A novel range measurement method using the difference between light and sound propagation speed is proposed. The experimental results show the temperature distribution as measured with the aid of the determined positions. The positions of every node were calculated with a PC program. Eight nodes were manufactured and their fundamental functions were tested. The results of the range measurement method, which takes relatively accurate measurements, contribute significantly to the accuracy of the position determination. Future studies will focus on 3-D position determination and on the architecture of appropriate sensors and actuators.

  • PDF