DOI QR코드

DOI QR Code

Hydrogen Sensor Based on Palladium-Attached Fiber Bragg Grating

  • Lee, Sang-Mae (Photonics Research Center Korea Institute of Science and Technology) ;
  • Sirkis, Jim-S. (Smart Materials and Structures Research Center Department of Mechanical Engineering, University of Maryland, College Park)
  • Received : 1999.06.22
  • Published : 1999.09.01

Abstract

This paper demonstrated the performance of a palladium wire hydrogen sensor based on a fiber Bragg grating as a means of developing a quasi-distributed hydrogen sensor network capable of operating at cryogenic temperatures. The new approach employing a fiber Bragg grating based palladium hydrogen sensor described in this study is advantageous over other traditional hydrogen sensors because of the multiplexing capability of fiber Bragg gratings. The sensitivity of the hydrogen sensor at room temperature is approximately 2.5 times that of the hydrogen sensor at cryogenic temperatures.

Keywords

References

  1. D'Amico, A. Palma, and E. Verona, Appl. Phys. Lett. 41, 300 (1982) https://doi.org/10.1063/1.93471
  2. M. C. Steele, and B. A. Macolver, Appl. Phys. Lett. 28, 687 (1976) https://doi.org/10.1063/1.88623
  3. I. Lundstrom, S. Shivaraman, C. Svensson, and L. Lundkvist, Appl. Phys. Lett. 26, 55 (1975) https://doi.org/10.1063/1.88053
  4. CRC Handbook of Chemistry and Physics, (72nd Edition, 1991-1992)
  5. M. A. Bulter, Appl. Phys. Lett. 45, 1007 (1984) https://doi.org/10.1063/1.95060
  6. M. A. Butler and D. S. Ginley, Appl. Phys. Lett. 64, 3706 (1988) https://doi.org/10.1063/1.341414
  7. J. S. Zeakes, K. A. Murphy, et al., Proc. IEEE LEOS'94, 2, 235 (1994)
  8. K. O. Hill and G. Meltz, J. Lightwave Tech. 15, 1263 (1997) https://doi.org/10.1109/50.618320
  9. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, J. Lightwave Tech. 15, 1442 (1997) https://doi.org/10.1109/50.618377

Cited by

  1. Optimizing the sensitivity of palladium based hydrogen sensors vol.259, 2018, https://doi.org/10.1016/j.snb.2017.11.180
  2. A low cost optical hydrogen sensing device using nanocrystalline Pd grating vol.37, pp.11, 2012, https://doi.org/10.1016/j.ijhydene.2012.03.010
  3. A PDMS-Coated Optical Fiber Bragg Grating Sensor for Enhancing Temperature Sensitivity vol.15, pp.4, 2011, https://doi.org/10.3807/JOSK.2011.15.4.329
  4. Micronanofabrication for optofluidic sensors vol.67, pp.11, 2015, https://doi.org/10.3938/jkps.67.1992
  5. Palladium-Based Hydrogen Sensors Using Fiber Bragg Gratings vol.36, pp.4, 2018, https://doi.org/10.1109/JLT.2017.2713038
  6. Enhancing Temperature Sensitivity Using Cyclic Polybutylene Terephthalate- (c-PBT-) Coated Fiber Bragg Grating vol.2018, pp.1687-7268, 2018, https://doi.org/10.1155/2018/3790326
  7. Improving the Sensitivity of Palladium-Based Fiber Optic Hydrogen Sensors vol.36, pp.11, 2018, https://doi.org/10.1109/JLT.2018.2807789