• 제목/요약/키워드: Distributed neural network

검색결과 169건 처리시간 0.024초

통신 실패에 강인한 분산 뉴럴 네트워크 분할 및 추론 정확도 개선 기법 (Communication Failure Resilient Improvement of Distributed Neural Network Partitioning and Inference Accuracy)

  • 정종훈;양회석
    • 대한임베디드공학회논문지
    • /
    • 제16권1호
    • /
    • pp.9-15
    • /
    • 2021
  • Recently, it is increasingly necessary to run high-end neural network applications with huge computation overhead on top of resource-constrained embedded systems, such as wearable devices. While the huge computational overhead can be alleviated by distributed neural networks running on multiple separate devices, existing distributed neural network techniques suffer from a large traffic between the devices; thus are very vulnerable to communication failures. These drawbacks make the distributed neural network techniques inapplicable to wearable devices, which are connected with each other through unstable and low data rate communication medium like human body communication. Therefore, in this paper, we propose a distributed neural network partitioning technique that is resilient to communication failures. Furthermore, we show that the proposed technique also improves the inference accuracy even in case of no communication failure, thanks to the improved network partitioning. We verify through comparative experiments with a real-life neural network application that the proposed technique outperforms the existing state-of-the-art distributed neural network technique in terms of accuracy and resiliency to communication failures.

동적 뉴런을 갖는 신경회로망을 이용한 산업용 로봇의 지능제어 (Intelligent Control of Industrial Robot Using Neural Network with Dynamic Neuron)

  • 김용태
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1996년도 추계학술대회 논문
    • /
    • pp.133-137
    • /
    • 1996
  • This paper presents a new approach to the design of neural control system using digital signal processors in order to improve the precision and robustness. Robotic manipulators have bevome increasingly important in the field of flexible automation. High speed and high-precision trajectory tracking arre indispensable capabilities for their versatile application. the need to meet demanding control requirement in increasingly complex dynamical control systems under sygnificant uncertainties leads toward design of implementing real time neural control to provide an enhanced motion control for robotic manipulators. In this control scheme the ntworks intrduced are neural nets with dynamic neurouns whose dynamics are distributed over all the network nodes. The nets are trained by the distributed dynamic are distributed over all the network nodes. The nets are trained by the distributed dynamic back propagation algorithm. The proposed neural network control scheme is simple in structure fast in computation and suitable for implementation of real-time control, Performance of the neural controller is illustrated by simulation and experimental results for a SCAEA robot.

  • PDF

Improved Estimation Method for the Capacitor Voltage in Modular Multilevel Converters Using Distributed Neural Network Observer

  • Mehdi Syed Musadiq;Dong-Myung Lee
    • 전기전자학회논문지
    • /
    • 제27권4호
    • /
    • pp.430-438
    • /
    • 2023
  • The Modular Multilevel Converter (MMC) has emerged as a key component in HVDC systems due to its ability to efficiently transmit large amounts of power over long distances. In such systems, accurate estimation of the MMC capacitor voltage is of utmost importance for ensuring optimal system performance, stability, and reliability. Traditional methods for voltage estimation may face limitations in accuracy and robustness, prompting the need for innovative approaches. In this paper, we propose a novel distributed neural network observer specifically designed for MMC capacitor voltage estimation. Our observer harnesses the power of a multi-layer neural network architecture, which enables the observer to learn and adapt to the complex dynamics of the MMC system. By utilizing a distributed approach, we deploy multiple observers, each with its own set of neural network layers, to collectively estimate the capacitor voltage. This distributed configuration enhances the accuracy and robustness of the voltage estimation process. A crucial aspect of our observer's performance lies in the meticulous initialization of random weights within the neural network. This initialization process ensures that the observer starts with a solid foundation for efficient learning and accurate voltage estimation. The observer iteratively updates its weights based on the observed voltage and current values, continuously improving its estimation accuracy over time. The validity of proposed algorithm is verified by the result of estimated voltage at each observer in capacitor of MMC.

Intelligent Control by Immune Network Algorithm Based Auto-Weight Function Tuning

  • Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.120.2-120
    • /
    • 2002
  • In this paper auto-tuning scheme of weight function in the neural networks has been suggested by immune algorithm for nonlinear process. A number of structures of the neural networks are considered as learning methods for control system. A general view is provided that they are the special cases of either the membership functions or the modification of network structure in the neural networks. On the other hand, since the immune network system possesses a self organizing and distributed memory, it is thus adaptive to its external environment and allows a PDP (parallel distributed processing) network to complete patterns against the environmental situation. Also. It can provi..

  • PDF

고급 분산 제어시스템을 위한 신경 회로망 제어 알고리즘의 개발 (Development of neural network algorithm for an advanced distributed control system)

  • 이승준;박세화;박동조;김병국;변증남
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.953-958
    • /
    • 1993
  • We develop a neural network control algorithm for the ACS (Advanced Control System). The ACS is an extended version of the DCS (Distributed Control System) to which functions of fault detection and diagnosis and advanced control algorithms are added such as neural networks, fuzzy logics, and so on. In spite of its usefulness proven by computer simulations, the neural network control algorithm, as far as we know, has no tool which makes it applicable to process control. It is necessary that the neural network controller should be turned into the function code for its application to the ACS. So we develop a general method to implement the neural network control systems for the ACS. By simulations using the simulator for the boiler of 'Seoul fire power plant unit 4', the methodology proposed in this paper is validated to have the applicability to process control.

  • PDF

분산 환경에서 신경망을 응용한 데이터 서버 마이닝 (Data Server Mining applied Neural Networks in Distributed Environment)

  • 박민기;김귀태;이재완
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2003년도 춘계종합학술대회
    • /
    • pp.473-476
    • /
    • 2003
  • 오늘날 인터넷은 하나의 거대한 분산 정보 서비스센터의 역할을 수행하며 여러 가지 많은 정보들과 이를 관리 운영하는 데이터 베이스 서버들은 분산된 네트워크 환경 속에서 광범위하게 존재하고 있다. 그러나 우리는 데이터 특성에 따라 입력 데이터를 처리할 서버를 결정하는데 여러 가지 어려움을 겪고 있다. 본 논문에서는 분산 환경 속에 존재하는 수많은 데이터들 가운데 신경망을 이용해 입력 데이터 패턴을 가장 효율적으로 처리할 수 있는 목적지 서버를 마이닝하는 기법과 이를 기반으로 한 지능적 데이터 마이닝 시스템 구조를 설계하였다. 그 결과로서 새로운 입력 데이터패턴이 신경망으로 구현된 동적 바인딩 방법에 따라 목적지 서버를 결정한 후 처리됨을 보였다. 이 기법은 데이터 웨어하우스, 통신 및 전력부하패턴 분석, 인구센서스 분석, 의료데이터 분석에 활용될 수 있다.

  • PDF

DSP를 이용한 조립용 로봇의 실시간 신경회로망 제어기 설계 (Design of Real-Time Newral-Network Controller Based-on DSPs of a Assembling Robot)

  • 차보남
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1999년도 추계학술대회 논문집 - 한국공작기계학회
    • /
    • pp.113-118
    • /
    • 1999
  • This paper presents a new approach to the design of neural control system using digital signal processors in order to improve the precision and robustness. Robotic manipulators have become increasingly important n the field of flexible automation. High speed and high-precision trajectory tracking are indispensable capabilities for their versatile application. The need to meet demanding control requirement in increasingly complex dynamical control systems under significant uncertainties, leads toward design of intelligent manipulation robots. The TMS320C31 is used in implementing real time neural control to provide an enhanced motion control for robotic manipulators. In this control scheme, the networks introduced are neural nets with dynamic neurons, whose dynamics are distributed over all the network nodes. The nets are trained by the distributed dynamic back propagation algorithm. The proposed neural network control scheme is simple in structure, fast in computation, and suitable for implementation of real-time control. Performance of the neural controller is illustrated by simulation and experimental results for a SCARA robot.

  • PDF

동적 뉴런을 갖는 신경 회로망을 이용한 스카라 로봇의 실시간 제어 실현 (Implementation of a Real-Time Neural Control for a SCARA Robot Using Neural-Network with Dynamic Neurons)

  • 장영희;이강두;김경년;한성현
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2001년도 춘계학술대회 논문집(한국공작기계학회)
    • /
    • pp.255-260
    • /
    • 2001
  • This paper presents a new approach to the design of neural control system using digital signal processors in order to improve the precision and robustness. Robotic manipulators have become increasingly important in the field of flexible automation. High speed and high-precision trajectory tracking are indispensable capabilities for their versatile application. The need to meet demanding control requirement in increasingly complex dynamical control systems under significant uncertainties, leads toward design of intelligent manipulation robots. The TMS320C31 is used in implementing real time neural control to provide an enhanced motion control for robotic manipulators. In this control scheme, the networks introduced are neural nets with dynamic neurons, whose dynamics are distributed over all the network nodes. The nets are trained by the distributed dynamic back propagation algorithm. The proposed neural network control scheme is simple in structure, fast in computation, and suitable for implementation of real-time control. Performance of the neural controller is illustrated by simulation and experimental results for a SCARA robot.

  • PDF

자율분산 신경망을 이용한 비선형 동적 시스템 식별 (Identification of nonlinear dynamical systems based on self-organized distributed networks)

  • 최종수;김형석;김성중;권오신;김종만
    • 대한전기학회논문지
    • /
    • 제45권4호
    • /
    • pp.574-581
    • /
    • 1996
  • The neural network approach has been shown to be a general scheme for nonlinear dynamical system identification. Unfortunately the error surface of a Multilayer Neural Networks(MNN) that widely used is often highly complex. This is a disadvantage and potential traps may exist in the identification procedure. The objective of this paper is to identify a nonlinear dynamical systems based on Self-Organized Distributed Networks (SODN). The learning with the SODN is fast and precise. Such properties are caused from the local learning mechanism. Each local network learns only data in a subregion. This paper also discusses neural network as identifier of nonlinear dynamical systems. The structure of nonlinear system identification employs series-parallel model. The identification procedure is based on a discrete-time formulation. Through extensive simulation, SODN is shown to be effective for identification of nonlinear dynamical systems. (author). 13 refs., 7 figs., 2 tabs.

  • PDF

ATM 망에서 축약 분산 기억 장치를 사용한 호 수락 제어 (Call admission control for ATM networks using a sparse distributed memory)

  • 권희용;송승준;최재우;황희영
    • 전자공학회논문지S
    • /
    • 제35S권3호
    • /
    • pp.1-8
    • /
    • 1998
  • In this paper, we propose a Neural Call Admission Control (CAC) method using a Sparse Distributed Memory(SDM). CAC is a key technology of TM network traffic control. It should be adaptable to the rapid and various changes of the ATM network environment. conventional approach to the ATM CAC requires network analysis in all cases. So, the optimal implementation is said to be very difficult. Therefore, neural approach have recently been employed. However, it does not mett the adaptability requirements. because it requires additional learning data tables and learning phase during CAC operation. We have proposed a neural network CAC method based on SDM that is more actural than conventioal approach to apply it to CAC. We compared it with previous neural network CAC method. It provides CAC with good adaptability to manage changes. Experimenatal results show that it has rapid adaptability and stability without additional learning table or learning phase.

  • PDF