• Title/Summary/Keyword: Distributed Parameter Systems

Search Result 160, Processing Time 0.023 seconds

A Spillover Suppression Method in a Flexible Structure Using Eigenstructure Assignment (고유구조지정법을 이용한 유연구조물의 스필오버 억제방법)

  • Park, Jae-Weon;Park, Un-Sik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.11
    • /
    • pp.955-962
    • /
    • 2000
  • Although large space structures(LSS) such as a space station, a solar power station satellite, etc., are theoretically distributed parameter and infinite-dimensional systems, they have to be modeled into a lumped parameter and large finite-dimensional system for control system design. Besides, there remains the fundamental problem that the modeled large finite-dimensional system must be controled with a much smaller dimensional controller due to the limitation of computing resources. This causes the spillover phenomenon which degrades control performances and reduces the stability margin. Furthermore, it may destabilize the entire feedback control system. In this paper, we propose a novel spillover suppression method in the active vibration control of large flexible structures by using eigenstructure assignment. Its validity and effectiveness are investigated and verified by the numerical experiments using a simply supported flexible beam, which is modeled to have four controlled modes and eight uncontrolled modes.

  • PDF

AN APPROACH TO WALSH FUNCTIONS FOR OPTIMAL CONTROL OF DETERMINISTIC SYSTEMS (확정계의 최적제어를 위한 WALSH함수 접근)

  • Ahn, Doo-Soo;Bae, Jong-Il;Lee, Myung-Kyu;Kim, Jong-Boo;Lee, Seung
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.116-120
    • /
    • 1989
  • The optimal control problem of linear Lumped Parameter Systems (LPS) and Distributed Parameter Systems (DPS) is studied by employing the technique of Walsh functions (WF). By the using the elegant operational properties of WF, a direct computational algorithm for evaluating the optimal control and trajectory of LPS and DPS is developed. Without the need of solving the traditional matrix Riccati equation, the WF approach in shown very simple in form and convenient for use of a computer. The approximation is in the sense of least squares employing WF as the basis and the results are in the piecewise constant and discrete form.

  • PDF

A Method of Simulating the Frequency-dependent Ground Impedance of Counterpoises (매설지선의 접지임피던스의 주파수의존성에 대한 모사기법)

  • Lee, Bok-Hee;Shin, Hee-Kyung;Seong, Chang-Hoon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.3
    • /
    • pp.73-79
    • /
    • 2012
  • A counterpoise is commonly employed in grounding systems installing near the ground surface of low resistivity soils and radial-type counterpoises are used in the limited space. Recently some studies on the evaluation of ground impedance of paralleling ground electrodes have carried out, but the data for providing the frequency-dependent ground impedances considering potential interferences are not yet sufficient. In order to provide the information about the design of grounding systems for surge protection, the simulations of the frequency-dependent ground impedance of various shaped counterpoises are carried out by using the distributed parameter circuit model including the effect of potential interferences. This paper presents the theoretical simulations and actual experiments of the frequency-dependent ground impedance of paralleling and 3 or 4-arms star counterpoises. The accuracy of the simulation methodology is examined by the comparison with the measured results, and the results show a good agreement between the simulation and the experiment.

A Genetic Approach for Joint Link Scheduling and Power Control in SIC-enable Wireless Networks

  • Wang, Xiaodong;Shen, Hu;Lv, Shaohe;Zhou, Xingming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.4
    • /
    • pp.1679-1691
    • /
    • 2016
  • Successive interference cancellation (SIC) is an effective means of multi-packet reception to combat interference at the physical layer. We investigate the joint optimization issue of channel access and power control for capacity maximization in SIC-enabled wireless networks. We propose a new interference model to characterize the sequential detection nature of SIC. Afterward, we formulize the joint optimization problem, prove it to be a nondeterministic polynomial-time-hard problem, and propose a novel approximation approach based on the genetic algorithm (GA). Finally, we discuss the design and parameter setting of the GA approach and validate its performance through extensive simulations.

Duplication with Task Assignment in Mesh Distributed System

  • Sharma, Rashmi;Nitin, Nitin
    • Journal of Information Processing Systems
    • /
    • v.10 no.2
    • /
    • pp.193-214
    • /
    • 2014
  • Load balancing is the major benefit of any distributed system. To facilitate this advantage, task duplication and migration methodologies are employed. As this paper deals with dependent tasks (DAG), we used duplication. Task duplication reduces the overall schedule length of DAG along-with load balancing. This paper proposes a new task duplication algorithm at the time of tasks assignment on various processors. With the intention of conducting proposed algorithm performance computation; simulation has been done on the Netbeans IDE. The mesh topology of a distributed system is simulated at this juncture. For task duplication, overall schedule length of DAG is the main parameter that decides the performance of a proposed duplication algorithm. After obtaining the results we compared our performance with arbitrary task assignment, CAWF and HEFT-TD algorithms. Additionally, we also compared the complexity of the proposed algorithm with the Duplication Based Bottom Up scheduling (DBUS) and Heterogeneous Earliest Finish Time with Task Duplication (HEFT-TD).

Lumped-parameter modeling of flexible manipulator dynamics

  • Kim, Jin-Soo;Konno, Atsushi;Uchiyama, Masaru;Usui, Kazuaki;Yoshimura, Kazuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.117-122
    • /
    • 1994
  • In this paper, we discuss the modeling of flexible manipulators. In the modeling of flexible manipulators, there are two approaches: one is based on the distributed-parameter modeling and the other on the lumped-parameter modeling. The former has been applied to control and analysis of simple manipulator requiring precision, while the latter has been applied to multi-link spatial manipulator, because of the model's simplicity. We have already proposed the lumped-parameter modeling method for simple manipulator, and investigate that model of how much degree of precision we can get. The experiments and simulations are performed, comparing these results, the approximate performance of our modeling method is discussed.

  • PDF

Pareto Optimized EDCA Parameter Control for Wireless Local Area Networks

  • Kim, Minseok;Oh, Wui Hwan;Chung, Jong-Moon;Lee, Bong Gyou;Seo, Myunghwan;Kim, Jung-Sik;Cho, Hyung-Weon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.10
    • /
    • pp.3458-3474
    • /
    • 2014
  • The performance of IEEE 802.11e enhanced distributed channel access (EDCA) is influenced by several interactive parameters that make quality of service (QoS) control complex and difficult. In EDCA, the most critical performance influencing parameters are the arbitration interframe space (AIFS) and contention window size (CW) of each access category (AC). The objective of this paper is to provide a scheme for parameter control such that the throughput per station as well as the overall system throughput of the network is maximized and controllable. For this purpose, a simple and accurate analytical model describing the throughput behavior of EDCA networks is presented in this paper. Based on this model, the paper further provides a scheme in which a Pareto optimal system configuration is obtained via an appropriate CW control for a given AIFS value, which is a different approach compared to relevant papers in the literature that deal with CW control only. The simulation results confirm the effectiveness of the proposed method which shows significant performance improvements compared to other existing algorithms.

Identification of Time-invariant Parameters of Distributed Systems via Extended Block Pulse Operational Matrices (확장된 블록 펄스 연산 행렬을 이용한 분포정수계의 시불변 파라미터 추정)

  • Kim, Tae-Hoon;Lee, Seung;Kim, Jong-Boo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.6
    • /
    • pp.82-88
    • /
    • 2001
  • This paper considers the problem of the identification of the time invariant parameters of distributed systems. In general, the parameters are identified by using the CBPOM(Conventional Block Pulse Operational Matrices), but in this paper, the parameters ard identified by using the EBPOMS(Extended Block Pulse Operational Matrices) which can reduce the burden of operation md the volume of error caused by matrices multiplication. The simulation cloves the effectiveness of the proposed method.

  • PDF

Cooperative Strategies and Swarm Behavior in Distributed Autonomous Robotic Systems based on Artificial Immune System

  • Sim, Kwee-bo;Lee, Dong-wook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.7
    • /
    • pp.591-597
    • /
    • 2001
  • In this paper, we propose a method of cooperative control (T-cell modeling) and selection of group behavior strategy (B-cell modeling) based on immune system in distributed autonomous robotic system (DARS). Immune system is living body's self-protection and self-maintenance system. These features can be applied to decision making of optimal swarm behavior in dynamically changing environment. For applying immune system to DARS, a robot is regarded as a B-cell, each environmental condition as an antigen, a behavior strategy as an antibody and control parameter as a T-cell respectively. The executing process of proposed method is as follows. When the environmental condition changes, a robot selects an appropriate behavior strategy. And its behavior strategy is stimulated and suppressed by other robot using communication. Finally much stimulated strategy is adopted as a swarm behavior strategy. This control school is based on clonal selection and idiotopic network hypothesis. And it is used for decision making of optimal swarm strategy. By T-cell modeling, adaptation ability of robot is enhanced in dynamic environments.

  • PDF

Fuzzy $H^{\infty}$ Controller Design for Uncertain Nonlinear Systems (불확실성을 갖는 비선형 시스템의 퍼지 $H^{\infty}$ 제어기 설계)

  • Lee, Kap-Rai;Jeung, Eun-Tae;Park, Hong-Bae
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.6
    • /
    • pp.46-54
    • /
    • 1998
  • This paper presents a method for designing robust fuzzy $H^{\infty}$ controllers which stabilize nonlinear systems with parameter uncertainty adn guarantee an induced $L_{2}$ norm bound constraint on disturbance attenuation for all admissible uncertainties. Takagi and Sugeno's fuzzy models with uncertainty are used as the model for the uncertain nonlinear systems. Fuzzy control systems utilize the concept of so-called parallel distributed compensation(PDC). Using a single quadratic Lyapunov function, the stability condition satisfying decay rate and disturbance attenuation condition for Takagi and Sugeno's fuzzy model with parameter uncertainty are discussed. A sufficient condition for the existence of robust fuzzy $H^{\infty}$ controllers is then presented in terms of linear matrix inequalities(LMIs). Finally, design examples of robust fuzzy $H^{\infty}$ controllers for uncertain nonlinear systems are presented.

  • PDF