

J Inf Process Syst, Vol.10, No.2, pp.193~214, June 2014
http://dx.doi.org/10.3745/JIPS.01.0001

193

Duplication with Task Assignment in Mesh
Distributed System

Rashmi Sharma* and Nitin*

Abstract—Load balancing is the major benefit of any distributed system. To facilitate this
advantage, task duplication and migration methodologies are employed. As this paper
deals with dependent tasks (DAG), we used duplication. Task duplication reduces the
overall schedule length of DAG along-with load balancing. This paper proposes a new
task duplication algorithm at the time of tasks assignment on various processors. With the
intention of conducting proposed algorithm performance computation; simulation has
been done on the Netbeans IDE. The mesh topology of a distributed system is simulated
at this juncture. For task duplication, overall schedule length of DAG is the main
parameter that decides the performance of a proposed duplication algorithm. After
obtaining the results we compared our performance with arbitrary task assignment,
CAWF and HEFT-TD algorithms. Additionally, we also compared the complexity of the
proposed algorithm with the Duplication Based Bottom Up scheduling (DBUS) and
Heterogeneous Earliest Finish Time with Task Duplication (HEFT-TD).

Keywords—Distributed System(DS), Task Assignment Heuristics, Task Duplication(TD),
Directed Acyclic Graph(DAG)

1. INTRODUCTION

The Distributed System consists of numerous self-ruling processors that communicate via
interconnection network. Each network follows different connectivity architectures, that are
known as network topology. Mesh topology is one of the topologies [1] that are employed here
for network connectivity. However, handling of mesh topology is very difficult because of the
inter-connectivity between every node. Such network connectivity in-between processors can be
of homogeneous or heterogeneous type. The homogeneous system shares identical architecture
whereas the heterogeneous system shares diverse architecture. Therefore, task scheduling is
complicated in the heterogeneous system due to non-uniform speed and communication
bandwidth. List-based and cluster based are two important scheduling classes that help with task
scheduling in the heterogeneous system [2]. This paper uses cluster based scheduling to solve
the complication of heterogeneity of processors. On the basis of processor computational
capacity [3] the entire system splits into three clusters (High, Medium, and Low).

Parallel task execution is the primary advantage of distributed system. Here, the independent
subtasks of any task can be run correspondingly on various processors. These subtasks are
generated from single task that is called--DAG (shows the interdependency in-between subtasks).
In order to accomplish the complete task (DAG) as fast as possible, subtasks are allocated to

Manuscript received March 06, 2013 ; first revision September 11, 2013 ; accepted March 31, 2014.
Corresponding Author : Nitin (delnitin@ieee.org)
* Department of Computer Science and Information Technology, Jaypee University of Information Technology,

Waknaghat, Solan, India (rashmi.nov30@gmail.com, delnitin@ieee.org)

pISSN 1976-913X
eISSN 2092-805X

Copyright ⓒ 2014 KIPS

Duplication with Task Assignment in Mesh Distributed System

194

separate processors of the same organization. These processors execute allocated tasks in
parallel according to their computational speed. After achieving the results, the destination
processor transmits it to the source processor (origin) of tasks. This paper explains the strategic
duplication of tasks on the various processors that finally reduce the schedule length of the entire
DAG.

The execution of any task passes through following two phases:
1. There is partitioning heuristic under which tasks split into dependent/independent tasks

known as DAG [4]. DAG represents the size of each task along with the computational
power consumption.

2. The allotment of processors to these distributed sub-tasks is another phase. First-Fit, Worst-
Fit, Best–Fit, and Communication Aware Worst-Fit are some task assignment heuristics [4-
6] that work with/ without task duplication.

These above-mentioned partitioning and assignment heuristics fall under the scheduling
problem. This problem is also known as grain size determination [7], the clustering problem
[8,9], or internalization pre-pass [10].

These above-mentioned First-Fit, Worst-Fit, and Best-Fit heuristics work in a sequential
manner and the duplication of a task is not followed here. CAWF is designed for the reduction
of communication costs in which two dependent tasks (predecessor-successor) can be allocated
on the same processor, which reduces the communication cost between tasks. In the case of
multiple successors of a single predecessor, CAWF assigns one of the successors to the same
processor with its predecessor and the rest of the successors use the Worst-Fit heuristic for
allocation. Hence, this is the downside of the CAWF algorithm.

This paper implements a new task duplication method that will overcome the limitation of
CAWF. We have chosen the basic task assignment (duplication is not allowed here), CAWF and
HEFT-TD algorithms to compare with the proposed algorithm. We chose these because these
algorithms have their own properties, time complexities, and advantages during task assignment.
There are many other algorithms that can be used for the execution of DAG in heterogeneous
environment i.e. DBUS and HEFT-TD [2,11] algorithms (few properties are comparable to the
proposed algorithm with a different approach).

In this work, we have proposed task duplication process at the time of its allocation before the
execution. In the proposed algorithm, DAG is traversed by using bottom-up approach and we
checked the dependencies of tasks with other tasks of DAG. If two independent tasks are found,
then those tasks will execute independently (in parallel). The background and preliminaries are
discussed in the following section. Additionally, Section III explains the proposed task
duplication algorithm. Further on in the paper, results and discussions will be shown, followed
by our conclusions and future work.

Table 1. Symbol Table

Symbol Definition G DAG V Vertices of DAG E Edges of DAG CC൫t୧,୩൯ Computation cost of task t୧ on k୲୦ processor t୧ Task

Rashmi Sharma and Nitin

195

p Total number of processors C୲౟,୲ౠ Communication cost b/w t୧ and t୨ C(t୧) Average computation cost of given task v൫t୧, t୨൯ data sent from task t୧ to t୨. S୷ Start-up cost on given processor D୶,୷ Data transfer rate from processor p୶ to p୷

TFT Total Finish Time pred(T୧) Predecessor of task T୧ T Set of tasks P Set of processors ET Execution Time DP Destination Processor

2. BACKGROUND AND PRELIMINARIES

Load balancing is the chief significance of the distributed system. This load balancing is
accomplished by using task duplication or migration in-between processors. As we are dealing
with dependent tasks, we employed the duplication of tasks here. Main role of task duplication is to
reduce the communication cost, which helps in the reduction of overall schedule length of entire
DAG. Many researchers have suggested various strategies for task duplication [11-14].

DAG is an arrangement of multiple tasks, out of which some tasks are dependent on previous
tasks and some are independent. In the case of dependency, successor tasks couldn’t execute
before the execution of dependent predecessor tasks. On the other hand, independent tasks can
execute in-parallel on several processors. In a DAG ܩ = 	 (ܸ, is a link between two ܧ ,(ܧ
nodes that explains the communication cost between two dependent tasks. These sub-tasks
(tasks) are assigned to various processors based on the features already discussed in our previous
paper [15] and in many other papers [11,13].

Definition2.1: The computation cost of any task on a given processor is dependent on the
computational capacity of a particular processor. The time taken by a processor to execute a
particular task is known as the computation cost or execution time of a task on a given processor.
Computation cost also depends on the size of a task as well.

Consider ܥܥ(ݐ௜,௞) is the computation cost of task ݐ௜on ݇௧௛	processor from ݌ number of
processors. Hence, the average computation cost of any task ܥ(ݐ௜)	is defined as:

∑=(௜ݐ)ܥ (௜,௞ݐ)ܥܥ ௣௞ୀଵ⁄݌ (1)

Definition2.2: Communication cost (ܥ௧೔,೟ೕ)	is the time consumed by the processor in sending

the data (results) of one task to another processor. This communication cost is dependent on the
volume of communicating data (amount of data under communication) and data transfer rate
from the source to the destination processor [11,14].

௧೔,೟ೕܥ = 	 ܵ௬ + 	௩൫௧೔,௧ೕ൯஽ೣ,೤ 	 (2)

Duplication with Task Assignment in Mesh Distributed System

196

If two jobs are assigned to the same processor then the communication cost,	ܥ௧೔,೟ೕ = 0.
Definition2.3: Total Finish Time (TFT) [16]:
The TFT of ݇௧௛	tasks on ௡ܲ	processor is:
)ܶܨܶ ௡ܲ) = ∑)	݈ܽݒ݅ݎݎܽ	ݓ݁݊) ௜ܶ)௞௜ୀଵ +)݁݉݅ݐ	݊݋݅ݐݑܿ݁ݔܧ	 ௜ܶ))	 (3)
)݈ܽݒ݅ݎݎܽ	ݓ݁݊ ௜ܶ) =)݀݁ݎ݌൫݁݉݅ݐ	݊݋݅ݐݑܿ݁ݔܧ ௜ܶ)൯ + ௣௥௘ௗ(்೔),்೔ (4)ܥ

 Fig. 1. Arbitrary DAG with Communication Cost

The above figure explains that the DAG contains tasks (subtasks) { ଵܶ, ଶܶ, ଷܶ, ସܶ, ହܶ, ଺ܶ} and {25,30,50,65,70,15,25} are their respective communication costs in-between dependent tasks.

Later on, the generation of random DAGs and subtasks (tasks of the DAG) will be assigned to
the respective processors. Task assignment is the process of assigning multiple tasks to the
numerous processors. Additionally, we used the parallel allocation and execution method for
task assignment here [17].

In distributed system the selection of processors for task allocation can be sequential or
parallel. For sequential task allocation First-Fit, Best-Fit, and Worst-Fit are well known. All of
these mentioned sequential allocation heuristics focus on computation costs but not on
communication costs. In [6] the author has discussed another assignment heuristic approach that
focuses on communication cost along with computation cost. This heuristic is known as a
Communication Aware Worst Fit (CAWF). According to CAWF, same processor is assigned to
a pair of predecessor-successor sub-tasks that brings down the communication cost in-between
the assigned pair. But if one predecessor has multiple successors, then the Worst-Fit algorithm is
used for the rest successors. Although the sequential assignment of tasks is also present here but
this algorithm seems helpful in reducing the communication cost.

Equation (3) calculates the TFT of a completed task on a particular processor. This TFT is
dependent on the execution cost of every sub-task (task) on the respective processors and on the
communication cost between dependent tasks (sub-tasks). The table below explains the
execution time (computation cost) of tasks on respective processors:

T5

T6

T4

T3
T2

T1

25

50

30

65
70

15 25

Rashmi Sharma and Nitin

197

Table 2. Execution Time of Tasks on Processors

As we are working on distributed system, we considered the parallel execution and allocation

of tasks here. Let us consider the case when processors are randomly selected for task assign-
ment and execution as well. In Fig. 2, the ଷܲ processor is randomly selected for ଵܶ, ସܶ	ܽ݊݀	 ଺ܶ	tasks; ଶܲ	is assigned for ଷܶ	and ହܶ; similarly ଵܲ executes the ଶܶ task. Based on
the execution cost and communication costs between the processors, the overall DAG schedule
length has been calculated. In arbitrary selection, the DAG schedule length may vary because it
is dependent on a preferred processor. There is no criterion for the processor selection for task
execution in the arbitrary method.

Fig. 2. The Arbitrary Allocation of Tasks on Processors in the Distributed System
ℎݐ݃݊݁ܮ	݈݁ݑℎ݁݀ܿܵ	ܩܣܦ = maxଵஸ௡)ܶܨܶ ௡ܲ) (5) =)ܶܨܶ)	ݔܽ݉ ଵܲ),)ܶܨܶ ଶܲ),)ܶܨܶ ଷܲ)) = (39,96,138)ݔܽ݉ = (6) ݁݉݅ݐ	݂݋	ݐ݅݊ݑ	138

Now, in Fig. 3, tasks are assigned according to the CAWF algorithm. Tasks that have a

predecessor and successor are allocated to the same processor and another task will follow the
Worst-Fit. (From figure 1) ଵܶ		is the only predecessor of tasks ଶܶ & ଷܶ. Similarly, ଶܶ	is the
predecessor of tasks ହܶ	& ସܶ. According to CAWF, one of the successors of these predecessors
will allocate on the same CPU and other tasks will follow the Worst-Fit. Therefore, ଵܶ	and ଷܶ

	 ௝ܲ ௜ܶ ଵܲ ଶܲ ଷܲ ସܲ

ଵܶ 35 5 15 10

ଶܶ 9 4 10 7

ଷܶ 6 8 4 12

ସܶ 23 45 15 26

ହܶ 10 7 9 11

଺ܶ 30 9 5 18

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

ଷܲ

ଶܲ

ଵܲ

ଷܶ
ଶܶ

ହܶ
ସܶ ଺ܶ

TFT=138unitof time

ଵܶ

Duplication with Task Assignment in Mesh Distributed System

198

(dependent tasks) are assigned on processor ଵܲ. Similarly, ଶܶ,	 ସܶ,	 ହܶ and ଺ܶ	are interdependent
tasks and are sequentially assigned to the next processor ଶܲ. Lastly, on the basis of computation
cost and communication cost, DAG schedule length has been calculated, which is lesser than the
previous method due to a reduction in communication costs.

Fig. 3. DAG Execution Using the CAWF Heuristic
ℎݐ݃݊݁ܮ	݈݁ݑℎ݁݀ܿܵ	ܩܣܦ = ݉ܽ)ܶܨܶ)ݔ ଵܲ),)ܶܨܶ ଶܲ)) = (41,165)ݔܽ݉

 = (7) ݁݉݅ݐ	݂݋	ݐ݅݊ݑ	165

Furthermore, the third type of allocation is our proposed task duplication algorithm that is

essentially an advanced adaptation of CAWF. In this method, tasks that have lesser execution
cost as compared to the communication cost become a duplicated task on a given processor.

From example above task ଵܶ	duplicates on ସܲ	processor, because its communication costs
towards dependent tasks ଶܶ,	and ଷܶ	is greater than its computation cost on particular processors.
Similarly, the computation costs of other dependent tasks are greater than their communication
costs and therefore, those tasks will not duplicate on other processors. By applying this
duplication technique the overall schedule length of the DAG is comparatively lower than the
previous methods.

Fig. 4. Proposed Task Duplication Methodology
ℎݐ݃݊݁ܮ	݈݁ݑℎ݁݀ܿܵ	ܩܣܦ = ݉ܽ)ܶܨܶ)ݔ ଶܲ),)ܶܨܶ ଷܲ),)ܶܨܶ ସܲ)) = (13,103,28)ݔܽ݉

 = (8) ݁݉݅ݐ	݂݋	ݐ݅݊ݑ	103

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

ସܲ

ଷܲ

ଶܲ

ଵܲ

ଵܶ

ଵܶ

ଷܶ

ଶܶ

ସܶ

ହܶ
଺ܶ

TFT=103unitof time

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

ଷܲ

ଶܲ

ଵܲ ଵܶ ଷܶ
ଶܶ ହܶ ସܶ ଺ܶ

TFT=165unitof time

Rashmi Sharma and Nitin

199

The proposed duplication algorithm is somewhat similar to the HEFT-TD and DBUS
algorithms. Additionally, the approach used here is different. The approach used in HEFT-TD is
top-down and we are using the bottom-up approach. Therefore, the proposed algorithm gives
similar or only slightly improved results than the existing ones. In the next section, we will
explain the proposed algorithm for task duplication followed by explaining the simulation
results.

3. THE PROPOSED TASK DUPLICATION ALGORITHM

There are many approaches that have been used for task assignment (i.e., First-Fit, Best-First,
Worst-Fit and Communication Aware Worst Fit (CAWF) algorithm etc.). However, all of these
heuristics select processors sequentially (the first processor assigns first and so forth) for the
assignment of tasks without duplication. The CAWF algorithm reduces the communication cost
by assigning the predecessor and successor on a single processor. This approach works fine if
the predecessor has a single successor; therefore, the downside of the CAWF approach is the
existence of multiple successors of a single predecessor task. We recognize that the primary
motive of task duplication is to reduce the communication cost that affects the overall schedule
length of DAG. Hence, in order to overcome the problem of CAWF, we used the task
duplication methodology. These days, numerous researchers have designed many task
duplication algorithms [2,11,14] with different approaches.

As we mentioned earlier, the topology we are using is a mesh that connects every processor
with all of the other processors of the system. After the generation of DAG on the given
processor, our proposed algorithm uses the bottom-up traversing of DAG, which is similar to the
DBUS algorithm [2]. This approach determines the dependent and independent tasks of DAG.
Independent tasks can execute in parallel and duplication is used for dependent tasks. Task
assignments depend on the computational capacity of an assigned processor, because the job
will execute on allotted processors. The duplication of a task is based on the communication cost
and execution cost of processors. At the time of duplication, there are a few critical things that
must be remembered. They are as listed below.

1) Limited number of duplicates: The algorithm must understand the number of
duplications of any task (Successor/Predecessor). The algorithm should avoid useless
duplication of tasks, consider that the ܥ௧೔,௧ೕ	between ݅௧௛	and ݆௧௛	task is less than the ܥ൫ ௝ܲ൯	of 	݆௧௛	processor and then there is no need to duplicate a task.

2) While conducting the bottom-up traversing of DAG, all child tasks are executed first
and then the parent tasks are. Due to which, parent task duplication decreases.

In the remainder of this section, the different modules of task duplication are elucidated.

3.1 Clustering of Heterogeneous Processors with Mesh Topology

We used mesh topology here for the interconnection of heterogeneous processors. Therefore,
processor computational power shows incongruence. In order to handle this heterogeneous
behavior of the system, the complete distributed system splits into three clusters (based on
computational capacity i.e., High, Medium, and Low). For the grouping of processors, we have
fixed some of the ranges that determine the efficiency level of processors. These ranges make a
decision randomly from 0 to 10.

Duplication with Task Assignment in Mesh Distributed System

200

Fig. 5. Clustering of Processors

In the above figure, each cell represents a node (processor), and on the basis of efficiency

range, the complete system is divided into three groups.
Blue represents “Low Efficiency,” which comes under 0 to 4 ranges. Yellow represents

“Medium Efficiency and this range lies between 5 to 7. Lastly, red is for “High Efficiency,” and
its range lies between 8 to 10.

Along with efficiencies, these nodes posses communication costs in-between their
communication channels; and we represented that cost with the help of an adjacency matrix.

Fig. 6. Communication Costs between Nodes

The above image is a matrix of communication costs between several CPUs. For example: ܥଷ,ଶ.

3.2 Generation of a Task on Nodes

In a distributed heterogeneous system, DAG can be generated on any node at any time. In the
above figure, task generation on a particular processor is indicated by the green color.

Rashmi Sharma and Nitin

201

Fig. 7. Task Generation on any node of system randomly

This algorithm generates tasks randomly on any node and the getEfficiency() function
retrieves the efficiency of a particular node.
BEGIN

TASKEXECUTION-ACTIONPERFORMED (java.awt.event.ActionEventevt)

1. Calendar c= Calendar.getInstance()
2. long m=c.getTimeInMillis()
3. Random r=new Random(m)
4. xcor=r.nextInt()
5. m=c.getTimeInMillis()
6. r.setSeed(m)
7. ycor=r.nextInt()
8. jbArray[Math.abs(xcor%5)][Math.abs(ycor%5)].setBackground(Color.GREEN)
9. group.getEfficiency(Math.abs(xcor%5),Math.abs(ycor %5))

END

After generation of DAG, the following algorithm retrieves efficiency of that particular node

and its communication cost with near (other) nodes.

The getmatrix() function obtains communication costs from one processor (where the task
generates) to other nodes. The gettaskmatrix() function sets the random DAG on a
particular node.

SHOW-ACTION-PERFORMED (java.awt.event.ActionEventevt)

BEGIN

1. ndag.getmatrix()
2. tdag.gettaskmatrix()

END

Duplication with Task Assignment in Mesh Distributed System

202

3.3 The DAG Matrix and its Tracing

The above module is the basic framework for our simulation. This module explains the
random DAG (in matrix format) of tasks; it shows the dependency/independence between tasks.
In the DAG matrix, 0 represents an independent task and 1 represents a dependency between the
two.

Fig. 8. DAG Representation in Terms of a Matrix

After the creation of DAG for its execution, the bottom-up approach is used here. Task ଻ܶ	is

an independent task (Column of ଻ܶ contains 0), ଺ܶ is dependent on ଻ܶ	(଺ܶ	 column has 1 on ଻ܶ row). Similarly, other dependencies have been made. For the traversing of this matrix of
tasks (DAG); first, we check the dependencies (the occurrence of 1’s in a column) and based on
this occurrence a sorting of tasks is carried out. This computation takes ܱ(݊ଶ) time.

Input: A sequence of n subtasks of DAG (ݐଵ, ,ଶݐ ଷݐ ……… .(௧௔௦௞஽஺ீݐ

Output: DAG in terms of matrix has been generated.

BEGIN cost times

1. count=0 ܿଵ 1
2. for i=0 to taskDAG.length ܿଶ ݊ + 1
3. for j=0 to taskDAG.length ܿଷ ݊ଶ
4. if taskDAG[j][i]==1 ܿସ ݊ െ 1
5. count++ ܿହ ݊ െ 1
6. End for
7. End for

END

Hence, we find that in the worst case, the running time of DAG generation is
 ܶ(݊) = 	 ܿଵ. 1 + ܿଶ. (݊ + 1) + ܿଷ. ݊ଶ + ܿସ. (݊ െ 1) + ܿହ. (݊ െ 1)	 = ܿଵ + ܿଶ. ݊ + ܿଶ + ܿଷ. ݊ଶ + ܿସ. ݊ െ ܿସ + ܿହ. ݊ െ ܿହ = ܿଷ. ݊ଶ + (ܿଶ + ܿସ + ܿହ)݊ + (ܿଵ + ܿଶ െ ܿସ െ ܿହ) = ܱ(݊ଶ).

Rashmi Sharma and Nitin

203

The running time of the algorithm is the sum of running times for each executed statement.
We can express the above equation in the form of	ܽ݊ଶ + ܾ݊ + ܿ for constants ܽ, ܾ and ܿ
which again depend on the statement costs ܿ௜; it is thus a quadratic function of	݊ i.e. ݊ଶ.

After getting the dependent tasks we check whether this dependency is direct or indirect. For
example, (Fig. 8) task directly dependent on task and is indirectly dependent on T଺		(Tଶ	 → 	Tସ	 → 	T଺) . These dependencies are determined by using Boolean Matrix
Multiplication.

Input: Two copies of DAG for Boolean Matrix Multiplication.

Output: Dependency of tasks.

CHECK-INDIRECT-DEPENDENCY (matrixsize1 [][],matrixsize2 [][],Row, Column)

BEGIN

1. m= ((matrixsize1.length)*(matrixsize1.length))/2
2. for count=0 to m
3. ResultMatrix=new int[matrixsize1.length][matrixsize1.length]
4. fori=Row to matrixsize1.length
5. int [] rowVector=getCurrentRow(matrixsize1, i)
6. for j=Column to matrixsize2.length
7. int[] columnVector=getCurrentColumn(matrixsize2, j)
8. for k=0 to matrixsize2.length
9. ifrowVector[k] == 1 &&columnVector[k]==1
10. ResultMatrix[i][j]=1
11. flag=true
12. break
13. End if
14. End for
15. if !flag
16. ResultMatrix[i][j]=0
17. End for
18. End for
19. fori=Row to matrixsize2.length
20. for j=Column to matrixsize2.length
21. End for
22. End for
23. ifResultMatrix[Row][Column] == 1
24. return true
25. else
26. matrixsize1 = ResultMatrix
27. End for
28. return false
EndCHECK-INDIRECT-DEPENDENCY ()

END

Duplication with Task Assignment in Mesh Distributed System

204

Similar to the above algorithms running time, we examined the fact that all of the rows of the
given matrix have log ݊	elements, each of which is either 0 or 1. We conducted a similar
examination with the each column of the given matrix. For the Boolean matrix multiplication
problem, we divided the complete matrix into rows and columns and each row (column) have log n elements. Therefore, here the complexity is	ܱ ቀ ଵ௟௢௚௡ቁ. The first for loop of the algorithm

calculates the number of multiplications (number of intermediate nodes from one task to another)
and it is having	ܱ(݊ଶ) complexity. Hence, the overall running time here is ܱ(݊ଷ/݈݊݃݋).

This traversing of DAG gives us a set of independent or dependent tasks. Furthermore, this
set adjoins the queue of sets that works as a dispatcher. The purpose of a dispatcher is to
discharge the tasks to the nodes. Task sets that come in front execute in parallel on different
processors and the next set is dependent on that previous set. This operation dispatches sets one
by one, so, that it is taking ܱ(1)	time.

Input: Independent or dependent tasks added into a queue.

Output: Dispatch tasks for execution.

QUEUE<SET<STRING>>QUEUEOFSET ()

BEGIN

1. Set<String> s = Independenttaskset()
2. if (setqueue.isEmpty())
3. setqueue.add(s)
4. return setqueue

 End QUEUEOFSET ()

QUEUE<SET<STRING>>TASKEXECUTION ()

1. Queue<Set<String>> q = queueofset()
2. while (q.iterator().hasNext())
3. Taskexecution(q.element())
4. return setqueue

 End TASKEXECUTION ()
END

In the above function queueofset(), add the returned set of independent tasks and other

function dispatches with the sets for execution. The tracing and dispatching of the tasks of DAG
takes ܱ(݊ଷ/݈݊݃݋)	time in total.

3.4 Assignment without Duplication

The previous module is the actual backbone of the complete simulation experiment. The
dispatcher dispatches the independent tasks to the nodes and the execution of the project will

Rashmi Sharma and Nitin

205

continue in the assigned processor.
Fig. 5 shows the clusters of processors and Table 2 represents the computation cost of

processors with respect to the tasks. The execution of tasks from the dispatcher depends on their
priorities. Here, the queue for a set of tasks has been maintained, which follows FIFO criteria.

Fig. 9. Dispatcher Queue (FIFO)

The above dispatcher works on every processor separately. ହܶ, ଻ܶ tasks will execute in

parallel on different processors. Now 	 ଺ܶ is dependent on ଻ܶ, after getting the result from ଻ܶ , ଺ܶ assign to the other processor. ଷܶ, ସܶ are dependent on ଺ܶ. After getting the output from ଺ܶ; ଷܶܽ݊݀	 ସܶ can execute in parallel. Now 	 ଶܶ requires output from ହܶ, ଷܶ	ܽ݊݀	 ସܶ . Finally ଵܶexecutes on its own processor (source).
From Fig. 7 we notice that random tasks generate on four different processors that have

different efficiencies. Let us take the DAG explained above, which is generated on a high
efficiency processor. In arbitrary assignment heuristic algorithms, the dispatcher assigns tasks to
other processors randomly. If the neighbor node is unable to execute extra given tasks, then the
given task will switch to another processor.

3.5 Duplication Scheduling Explanation

This section explains the proposed duplication strategy that helps in reducing the schedule
length of DAG. After the generation of random DAGs on particular nodes, its computational
capability (efficiency) and communication cost of other processors is calculated (as shown in
module B). We used the bottom-up approach of DAG. By using it we have designed a
dispatcher queue that first allocates the processor to the first set of independent tasks. Those
assigned independent tasks can execute in parallel on allocated processors. After the execution
of these assigned tasks, the processor of dependent tasks starts with the implementation, because
the output of the predecessor becomes the input for its successor.

Now, for the execution of such dependent task, task duplication is used. Our duplication
approach is based on the following factors:

1. Communication cost: The time taken in the resettlement of the predecessor output
towards its successor is the communication cost between them. If this data transfer rate is
high then there is a requirement for the duplication of tasks to occur.

2. Computation cost: The time occupied by a processor to execute the specified task is the
computation cost of the assigned tasks of the allotted processor.

In order to execute our approach, we first set the computation costs of a particular task (let us

say ݇ݏܽݐ௜) on all of the processors in ascending order. Additionally, the communication costs
between ݇ݏܽݐ௜	and its successors were arranged in descending order. Afterwards, the scheduler
compares the successors computation cost in the source processor of ݇ݏܽݐ௜ and the

ହܶ, ଻ܶ ଺ܶ ଷܶ, ସܶ ଶܶ ଵܶ

Duplication with Task Assignment in Mesh Distributed System

206

communication cost between tasks. If the computation cost is smaller than the ܥ௧௔௦௞೔,௦௨௖௖௘௦௦௢௥௦	then the duplication of a successor task in the source processor of ݇ݏܽݐ௜ is
achievable. Carrying out duplication in this way, along with the bottom-up approach, also
decreases the number of duplications. The algorithm shown below explains the conditional
duplication of our approach.

Input: The task with the Execution Time (ET) and communication cost (ܥ௧೔,௧ೕ) between
connected tasks.
Output: Duplicate tasks to the Destination Processor (DP).

BEGIN
1. IF (ܥ > ܶܧ௧೔,௧ೕ)

2. DUPLICATE (௜ܶ , (ܲܦ

3. ELSE

4. setqueue. TASKEXECUTION (௜ܶ , ܲ)

END

During the simulation of this duplication algorithm, we suspected that the number of

processors affects the schedule length of the complete DAG with or without duplication. In it,
we simulated one common DAG on two different distributed systems with or without
duplication. The schedule length of DAG varies from the number of processors. We checked it
for 5 and 10 processors.

Theorem 1: If we increase the number of processors in any distributed system then, will there

be a need for task duplication?
Explanation: The addition of any processor in a system means accumulation of new

computational power in the same. We can say that if we are increasing the number of processing
powers, then schedule length of DAG should be small even without duplication.

Let us assume that the following common DAG and two different pairs of distributed systems
exist. One system is a group of 5 processors. The other system is a group of 10 processors.

Fig. 10 explains the computation costs of tasks on the given processors of the system. This
theorem explains the relationship between task duplication and schedule length. In order to
establish the relationship between both, we have considered the two examples listed below.

1. A smaller number of processors with or without duplication:

Fig. 10(b) is a system of 5 processors with general computational capacity. If we execute the
given DAG (Figure 10 (a)) on this system by using duplication, the overall schedule length of
DAG is comparatively low (as shown in Fig. 11).
2. A greater number of processors with or without duplication:

 After implementing a small system, we expanded the given system by the addition of 5
supplementary processors to increase computational capacity. Following the execution of the
same DAG on this new arrangement, we again figured out that by using duplication, the
schedule length of the DAG is less.

Rashmi Sharma and Nitin

207

For task duplication we have used following criteria:
If (ܥ> ܶܧ௧೔,௧ೕ) then the duplication of a task occurs, but if the reverse occurs, then there is no

need for duplication.
Other side of the coin is that when we increased the limit of processors by 5, then the DAG

schedule length is increased as compared to the 5-processor system. Consequently, we cannot
say that the schedule length is dependent upon the size of the system. By increasing the number
of processors, the overall schedule length may or may not be reduced without duplication. The
reason behind this is that the execution of a task is dependent on the computational capacity of
any processor of the system and the usage of duplication is the best way to shorten the schedule
distance.

Fig. 10. (a) Arbitrary DAG (b) Distributed System of 5 (c) 10 Processors

(a)

T7

T9

 T4

T2
T3

T1

16

60

7

12

8
10

T5 T6

T5

25 9

 12
 8

15

P
T

ଵܲ ଶܲ ଷܲ ସܲ ହܲ ଺ܲ ଻ܲ ଼ܲ ଽܲ ଵܲ଴

ଵܶ 25 10 6 24 12 15 11 6 10 14 ଶܶ 18 15 16 20 10 21 17 19 14 16 ଷܶ 9 11 8 16 14 15 13 7 10 9 ସܶ 8 9 7 10 3 9 6 11 4 5 ହܶ 12 13 15 10 8 7 11 9 14 16 ଺ܶ 7 13 15 12 11 8 14 16 13 15 ଻ܶ 19 15 20 12 10 21 16 18 11 17 ଼ܶ 13 20 17 14 12 14 21 16 13 15 ଽܶ 16 11 15 10 12 17 10 14 11 9

(c)

P
T

ଵܲ ଶܲ ଷܲ ସܲ ହܲ

ଵܶ 25 10 6 24 12

ଶܶ 18 15 16 20 10

ଷܶ 9 11 8 16 14

ସܶ 8 9 7 10 3

ହܶ 12 13 15 10 8

଺ܶ 7 13 15 12 11

଻ܶ 19 15 20 12 10 ଼ܶ 13 20 17 14 12

ଽܶ 16 11 15 10 12

(b)

Duplication with Task Assignment in Mesh Distributed System

208

Fig. 11. Schedule Length vs. DAG Execution With or Without Duplication

4. RESULTS AND COMPARISONS

Here, the proposed algorithm for task duplication in heterogeneous systems with mesh
topology was simulated. Simulation results for the bottom-up approach of random DAGs show
that the makespan generated by the proposed algorithm is better than the existing compared
algorithms i.e. arbitrary task assignment, CAWF and HEFT-TD algorithms. The concept of task
duplication is used in the task assignment heuristic in mesh topology. Our proposed algorithm is
named as Task Duplication Assisted Schedule Length Minimization Algorithm (TDASLM). The
given example and simulations performed explain that the TFT can be cut down by reducing the
communication cost because of duplication and that it can be done so by using optimal
assignment (the communication cost must be greater than the execution time of related tasks on
that processor).

4.1 Experimental Set-up and Test Bed

1. Topology
In a distributed system, the connectivity architecture that follows the processors of the entire

system is known as topology. Some basic topologies that are followed by any network/ distribut-
ed system are bus, ring, star, and mesh. The implementation of bus, ring and star topologies are
simpler when compared to mesh topology. In mesh topology each processor is associated with
every other processor of the system. Due to the connectivity complexity of mesh topology, its
handling is difficult to enforce. We simulated fully connected mesh topology in our proposed
work.

5 Processors 10 Processors

Without Duplication 110 153

With Duplication 83 93

83 93

110
153

0

50

100

150

200

250

300
S

ch
ed

ul
e

L
en

gt
h

(i
n

m
il

li
se

co
nd

)

DAG Schedule length vs with/without duplication

Rashmi Sharma and Nitin

209

Fig. 12. explains the experimental setup of our proposed study. Listed below are some attributes
that explain how the given set-up functions

2. Participating processors
Participating processors are the processors that belong to the distributed system. The

participation of the processors devises an environment for the system that determines the overall
performance of the system. Here, heterogeneous processors are utilized in this simulation. The
term heterogeneous means that each processor of the system shares different architecture.
Internal storage capacity and computational power are the main components of any architecture.
Here every processor has different computational capacities. Hence, we have used a clustering
method that splits the entire system into three clusters (i.e. Low, Medium, and High). All
clusters have some fixed range of computational efficiency (Fig. 5).

3. Normal DAG sub-tasks
The proposed duplication algorithm works on DAG. As we discussed in the previous section,

independent tasks will execute in parallel on different processors. Those assigned tasks behave
like normal executable tasks.

4. Duplicate sub-tasks
We have divided the entire DAG into dependent or independent tasks. Duplication method is

used for the decrease in communication cost between dependent tasks. There are various
methods for task duplication, but the way of conducting processor selection for the execution of
duplicate tasks/subtasks varies. In our method, we compared the computation and
communication cost of the duplicated task in the destination processor. If the computation cost
of processor is greater than the communication cost, then there is no requirement for duplication
to occur.

ଵܲ ଶܲ ଷܲ ସܲ ହܲ

଺ܲ ଵܲଶ

ଵܲଵ ଵܲ଴ ଽܲ ଼ܲ ଻ܲ

Normal DAG
subtasks

Duplicate
subtasks

Inter-connectivity
in-between

processors (mesh
topology)

Processors
Participated in

Distributed
System

Duplication with Task Assignment in Mesh Distributed System

210

These above techniques and all components of the framework are implemented in the
Netbeans 6.9 IDE environment that runs on Ubuntu Version 11.10. We periodically generated
random DAGs on any processor. The matrix is used to execute the DAG and queue data
structure and it has been used to implement the dispatcher. Java threads are used to execute and
communicate sub-tasks with each other. We continuously ran up to 100 DAG upto 30 times on
12 and 16 processors to compute the overall schedule length of DAG. We simulated our
duplication algorithm along with the CAWF, arbitrary task assignment heuristics and HEFT-TD
on the above designed framework.

Our proposed algorithm is the reproduction of HEFT-TD [11], but we have implemented it by
using mesh topology and the bottom-up approach. Therefore, its complexity is a little bit higher.

Table 3. The Algorithmic Complexity of the Existing Duplication DBUS, HEFT-TD, and Proposed

TDASLM Algorithms

Duplication Algorithms Complexity

DBUS ܱ(|݊ଶ||ܲଶ|)

HEFT-TD ܱ(|ܸଶ|(݌ + ݀))

TDASLM(Proposed Algorithm) ܱ(௡య௟௢௚௡)

Mesh topology is good for a limited number of processors. As processors increase the

connections between them also increase due to which system becomes more complex. It is the
limitation of our algorithm that this algorithm is finer for inadequate size of distributed system.

4.2 Comparisons

4.2.1 Schedule Length

The schedule length (TFT) of DAG is computed by using Equation (3). The TFT of DAG
without duplication (arbitrary processor selection method) is very high as compared to CAWF,
where schedule length is decreased by cutting down the communication cost in-between tasks.
When we used duplication, the resultant schedule length was very low as compared to CAWF
and the arbitrary method, as well. The HEFT-TD method uses the top-down approach in DAG
traversing and the proposed algorithm employs a bottom up approach. Therefore, the schedule
length of our proposed algorithm gives similar or slightly better results than the other two
algorithms.

Rashmi Sharma and Nitin

211

Fig. 13. Comparison of the Proposed Algorithm with Existing Assignment Algorithms

4.2.2 Computation to Communication Ratio (CCR):

The Computation to Communication Ratio (CCR) is the ratio of the number of calculations a
process does to the total size of the messages it sends. This ratio depends upon the average
communication volume and average task execution weight. The speed of the communication
channel also affects the CCR and this speed depends on the computational speed of processors.
In this paper, we used heterogeneous processors that had different computational speeds. It
comes under mesh topology, so a high processing power processor connecting with a low
processing power processor and vice versa is possible. Therefore, if any data moves from the
higher efficiency processor to a less efficient processor and the speed of the communication
channel is very fast, then the CCR will be higher. However, if the speed of the channel is high
and the computational cost of processor is very low, then CCR will once again be affected.
Therefore, CCR varies with both processor speeds, as well as with the communications channel,
because we used mesh topology with heterogeneous processors here.

5. CONCLUSIONSAND FUTURE WORK

We employed the task duplication concept during the assignment procedure (before the
implementation of tasks). This duplication reduced the total finish time of a task. According to
Theorem1, we also explained that the TFT (schedule length) of a task is wholly dependent upon
the execution power of the processor and if we apply duplication, then it will generate good
results.This task duplication can overload a processor, in order to overcome the overload. In the
future, we will extend this algorithm with task migration in the distributed or Real Time
Distributed System (RTDS).

Duplication with Task Assignment in Mesh Distributed System

212

REFERENCES

[1] L. N. Bhuyan and D. P. Agrawal, “Generalized hypercube and hyperbus structures for a computer
network,” IEEE Transactions on Computers, vol. C-33, no. 4, pp. 323-333, 1984.

[2] D. Bozdağ, U. Catalyurek, and F. Özgüner, “A task duplication based bottom-up scheduling
algorithm for heterogeneous environments,” in Proceedings of the 20th International Parallel and
Distributed Processing Symposium, Rhodes Island, Greece, 2006.

[3] Y. Jégou, “Runtime support for task migration on distributed memory architectures,” in Proceedings

of the 11th International Conference on Parallel Processing Symposium, Geneva, Switzerland, 1997.
[4] J. M. Lopez, M. Garcia, J. L. Diaz, and D. F. Garcia, “Worst-case utilization bound for EDF

scheduling on real-time multiprocessor systems,” in Proceedings of the 12th Euromicro Conference
on Real-Time Systems, Stockholm, Sweden, 2000, pp. 25-33.

[5] A. Burchard, J. Liebeherr, O. Yingfeng, and S. H. Son, “New strategies for assigning real-time tasks
to multiprocessor systems,” IEEE Transactions on Computers, vol. 44, no. 12, pp. 1429-1442, 1995.

[6] C. Wang, “Dynamic voltage scaling for priority-driven scheduled distributed real-time systems,”
Ph.D. dissertation, University of Kentucky, Lexington, KY, 2007.

[7] E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson, “Approximation algorithms for bin packing: a
survey,” in Approximation Algorithms for NP-Hard Problems, D. S. Hochbaum, Ed. Boston, MA:
PWS Pub. Co., 1997, pp. 46-93.

[8] A. Bashiry, S. A. Madaniy, J. H. Kazmiy, and K. Qureshix, “Task partitioning and load balancing
strategy for matrix applications on distributed system,” Journal of Computers, vol. 8, no. 3, pp. 576-
584, 2013.

[9] J. Baxter and J. H. Patel, “The LAST algorithm: a heuristic-based static task allocation algorithm,” in
Proceedings of the 1989 International Conference on Parallel Processing, University Park, PA, 1989,
pp. 217-222.

[10] B. Kruatrachue and T. Lewis, “Grain size determination for parallel processing,” IEEE Software, vol.
5, no. 1, pp. 23-32, 1988.

[11] P. Chaudhuri and J. Elcock, “Process scheduling in heterogeneous multiprocessor systems using task
duplication,” International Journal of Business Data Communications and Networking, vol. 6, no. 1,
pp. 58-69, 2010.

[12] S. Ranaweera and D. P. Agrawal, “A task duplication based scheduling algorithm for heterogeneous
systems,” in Proceedings of the 14th International Parallel and Distributed Processing Symposium,
Cancun, Mexico, 2000, pp. 445-450.

[13] S. Ranaweera and D. P. Agrawal, “A scalable task duplication based scheduling algorithm for
heterogeneous systems,” in Proceedings of the International Conference on Parallel Processing,
Toronto, Canada, 2000, pp. 383-390.

[14] J. Singh and H. Singh, “Efficient tasks scheduling for heterogeneous multiprocessor using genetic
algorithm with node duplication,” Indian Journal of Computer Science and Engineering, vol. 2, no. 3,
pp. 402-410, 2011.

[15] R. Sharma and N. Nitin, “Duplication with task assignment in mesh distributed system,” in World
Congress on Information and Communication Technologies, Mumbai, India, 2011, pp. 672-676.

[16] E. G. Coffman, Jr., G. Galambos, S. Martello, and D. Vigo, “Bin packing approximation algorithms:
combinatorial analysis,” in Handbook of Combinatorial Optimization, D. Du and P. M. Pardalos, Eds.
Boston, MA: Kluwer Academic Publishers, 1998, pp. 151-207.

[17] V. M. Lo, “Heuristic algorithms for task assignment in distributed systems,” IEEE Transactions on
Computers, vol. 37, no. 11, pp. 1384-1397, 1988.

Rashmi Sharma and Nitin

213

APPENDIX

//Here is the main code for DAG tracing:

public static void main(String[] args) throws DAGCycleException
 {
CountOneFromMatrixcofm=new CountOneFromMatrix(taskDAG);
ArrayList<SortedTask>taskList= cofm.getColumnOneCountInSorted();
for(int i=0;i<taskList.size();i++)
 {
SortedTask t=taskList.get(i);
System.out.println("The taskid="+t.getTaskid()+"and dependency="+t.getDependency());
 }
TaskCatagorization taskCatagorization=new TaskCatagorization();
taskCatagorization.setSortedTasks(taskList);
taskCatagorization.setTaskDAG(taskDAG);
taskCatagorization.constructTaskQueue();
 }
}

// Following code explains how we set the efficiency and communication cost

public static void main(String[] args) throws InterruptedException
 {
final Group g=new Group();
 Runnable r=new Runnable() {
public void run()
 {
for(inti=0;i<8;i++)
 {
for(int j=0;j<8;j++)
 {
 Calendar c=Calendar.getInstance();
long m=c.getTimeInMillis();
 Random r=new Random(m*i*j);
int x=Math.abs(r.nextInt() %10);
g.setEfficiency(i, j, x);
 }
 }
 }
 };
 Thread t=new Thread(r);
t.start();
NewJFramejFrame=new NewJFrame(g);
jFrame.setTitle("Distributed Computing Simulation");
jFrame.setVisible(true);
jFrame.setSize(800, 800);
jFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
jFrame.setLocation(200, 50);
jFrame.setGroup(g);
}

Duplication with Task Assignment in Mesh Distributed System

214

Rashmi Sharma

She holds M.Sc (2008), M.Tech (2010) in computer science from Banasthali

University, Rajasthan (India). Currently pursuing Ph.D in the field of Real Time

Distributed system in computer science from Jaypee University of Information

Technology, Waknaghat, Solan(H.P, India).

Dr. Nitin

He is Ex First Tier Bank Professor, University of Nebraska at Omaha, NE, USA.

His permanent affiliation is with Jaypee University of Information Technology

(JUIT), Waknaghat, Solan-173234, Himachal Pradesh, INDIA as a Associate

Professor in the Department of Computer Science & Engineering and

Information & Communication Technology. He joined Jaypee University of

Information Technology in July 2003. He was born on October 06, 1978, in New

Delhi, INDIA.

In July 2001, he received the B.Engg. in Computer Science & Engineering [Hons.] and M.Engg. in

Software Engineering from Thapar Institute of Engineering and Technology, Patiala, Punjab, INDIA in

March 2003. In 2008, he received his Ph.D. in Computer Science & Engineering from JUIT, INDIA. He

has completed his Ph.D. course work from University of Florida, Gainesville, FL, USA.

He is a IBM certified engineer. He is a Life Member of IAENG, Senior Member IACSIT and Member of

SIAM, IEEE and ACIS and has 121 research papers in peer reviewed International Journals &

Transactions, Book Chapters, Symposium, Conferences and Position. His research interest includes

Social Networks especially Computer Mediated Communications & Flaming, Interconnection Networks

& Architecture, Fault-tolerance & Reliability, Networks-on-Chip, Systems-on-Chip, and Networks-in-

Packages, Application of Stable Matching Problems, Stochastic Communication and Sensor Networks.

Currently he is working on Parallel Simulation tools, BigSim using Charm++, NS-2 using TCL. He is

referee for the Journal of Parallel and Distributed Computing, Elsevier Sciences, Computer

Communications, Elsevier Sciences, Computers and Electrical Engineering, Elsevier Sciences,

Mathematical and Computer Modelling, Elsevier Sciences. WSEAS Transactions, The Journal of

Supercomputing, Springer and International Journal of System Science, Taylor &Francis.

