• 제목/요약/키워드: Distortional

검색결과 75건 처리시간 0.02초

쉘요소를 이용한 박판다실박스거더에서의 비틀림과 뒤틀림 해석기법 연구 (A Study of Torsional and Distortional Analysis of Thin-walled Multicell Box Girder Using Shell Elements)

  • 김승준;박종섭;김성남;강영종
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2007년도 정기총회 및 학술발표대회
    • /
    • pp.71-74
    • /
    • 2007
  • Thin-walled multicell box girders subjected to an eccentric load can be produced the three global behaviors of flexure, torsion, and distortion. But it is very difficult to evaluate each influences of major behaviors numerically. If we can decompose an eccentric load P into flexural, torsional, and distortional forces, we can execute quantitative analysis each influences of major behaviors. Decomposition of Applied Load for Thin-walled Rectangular multi-cell box girders is researched by Park, Nam-Hoi(Development of a multicell Box Beam Element Including Distortional Degrees of Freedom, 2003). But researches about thin-walled trapezoidal multi-cell section is insufficient. So, this paper deals with decomposition process and independent analysis method of multi-cell box girders include trapezoidal section.

  • PDF

강상자형 거더의 엄밀한 단면변형(Distortion) 해석 (Exact Distortional Deformation Analysis of Steel Box Girders)

  • 진만식;곽태영;이준석;김문영
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.43-50
    • /
    • 2002
  • Main goal of this study is to develop MATLAB programming for exact analysis of distortional deformation of the straight box girder. For this purpose, a theory for distortional deformation theory is firstly summarized and then a BEF (Beam on Elastic Foundation) theory is presented using analogy of the corresponding variables. Finally, the governing equation of the beam-column element on elastic foundation is derived. An element stiffness matrix of the beam element is established via a generalized linear eigenvalue problem. In order to verify the efficiency and accuracy of the element using exact dynamic stiffness matrix, buckling loads for the continuous beam structures with elastic foundation and distortional deformations of box girders are calculated.

  • PDF

Inelastic distortional buckling of cantilevers

  • Lee, Dong-Sik;Bradford, Mark Andrew
    • Steel and Composite Structures
    • /
    • 제3권1호
    • /
    • pp.1-12
    • /
    • 2003
  • Cantilevers are unique statically determinate structural elements with respect to their mode of overall buckling, in that the tension flange is the critical flange under gravity loading, and is the flange that deflects greatest during overall buckling. While this phenomenon does not complicate the calculation of the lateral buckling load, either theoretically or in structural design codes, it has been shown in previous research that the influence of distortion in the elastic buckling of cantilevers is not the same as that experienced in the elastic buckling of simply supported beams. This paper extends the study of the distortional buckling of cantilevers into the hitherto unconsidered inelastic range of structural response. A finite element method for studying the inelastic bifurcative instability of members whose cross-sections may distort during buckling is described, and the efficacy of the method is demonstrated. It is then used to study the inelastic distortional buckling of hot-rolled I-section cantilevers with two common patterns of residual stresses, and which may be restrained elastically from buckling by other structural elements.

Post buckling mechanics and strength of cold-formed steel columns exhibiting Local-Distortional interaction mode failure

  • Muthuraj, Hareesh;Sekar, S.K.;Mahendran, Mahen;Deepak, O.P.
    • Structural Engineering and Mechanics
    • /
    • 제64권5호
    • /
    • pp.621-640
    • /
    • 2017
  • This paper reports the numerical investigation conducted to study the influence of Local-Distortional (L-D) interaction mode buckling on post buckling strength erosion in fixed ended lipped channel cold formed steel columns. This investigation comprises of 81 column sections with various geometries and yield stresses that are carefully chosen to cover wide range of strength related parametric ratios like (i) distortional to local critical buckling stress ratio ($0.91{\leq}F_{CRD}/F_{CRL}{\leq}4.05$) (ii) non dimensional local slenderness ratio ($0.88{\leq}{\lambda}_L{\leq}3.54$) (iii) non-dimensional distortional slenderness ratio ($0.68{\leq}{\lambda}_D{\leq}3.23$) and (iv) yield to non-critical buckling stress ratio (0.45 to 10.4). The numerical investigation is carried out by conducting linear and non-linear shell finite element analysis (SFEA) using ABAQUS software. The non-linear SFEA includes both geometry and material non-linearity. The numerical results obtained are deeply analysed to understand the post buckling mechanics, failure modes and ultimate strength that are influenced by L-D interaction with respect to strength related parametric ratios. The ultimate strength data obtained from numerical analysis are compared with (i) the experimental tests data concerning L-D interaction mode buckling reported by other researchers (ii) column strength predicted by Direct Strength Method (DSM) column strength curves for local and distortional buckling specified in AISI S-100 (iii) strength predicted by available DSM based approaches that includes L-D interaction mode failure. The role of flange width to web depth ratio on post buckling strength erosion is reported. Then the paper concludes with merits and limitations of codified DSM and available DSM based approaches on accurate failure strength prediction.

An independent distortional analysis method of thin-walled multicell box girders

  • Park, Nam-Hoi;Kang, Young-Jong;Kim, Hee-Joong
    • Structural Engineering and Mechanics
    • /
    • 제21권3호
    • /
    • pp.275-293
    • /
    • 2005
  • When a thin-walled multicell box girder is subjected to an eccentric load, the distortion becomes an important global response in addition to flexure and torsion. The three global responses appear in a combined form when a conventional shell element is used thus it is not an easy task to examine the three global responses separately. This study is to propose an analysis method using conventional shell element in which the three global responses can be separately decomposed. The force decomposition method which was designed for a single-cell box girder by Nakai and Yoo is expanded herein to multicell box girders. The eccentric load is decomposed in the expanded method into flexural, torsional, and multimode distortional forces by using the force equilibrium. From the force decomposition, the combined global responses of multicell box girders can be resolved into separate responses and the distortional response which is of primary concern herein can be obtained separately. It is shown from a series of extensive comparative studies using three box girder bridge models that the expanded method produces accurate decomposed results. Noting that the separate consideration of individual global response is of paramount importance for optimized multicell box girder design, it can be said that the proposed expanded method is extremely useful for practicing engineers.

Elastic lateral-distortional buckling of I-beams and the Meck Plot

  • Zirakian, Tadeh;Nojoumi, Seyed Ali
    • Structural Engineering and Mechanics
    • /
    • 제37권3호
    • /
    • pp.297-307
    • /
    • 2011
  • Meck Plot is an adapted version of the well-known Southwell method to the case of lateral-torsional buckling, which indeed reflects the physical inter-dependence of lateral flexure (lateral displacement) and torsion (rotation) in the structure. In the recent reported studies, it has been shown experimentally and theoretically that lateral displacement of an I-beam undergoing elastic lateral-distortional mode of buckling is interestingly directly coupled with other various deformation characteristics such as web transverse strain, web longitudinal strain, vertical deflection, and angles of twist of top and bottom flanges, and consequently good results have been obtained as a result of application of the Meck's method on lateral displacement together with each of the aforementioned deformation variables. In this paper, it is demonstrated that even web transverse and longitudinal strains, vertical deflection, and angles of twist of top and bottom flanges of an I-beam undergoing elastic lateral-distortional buckling are two-by-two directly coupled and the application of the Meck Plot on each pair of these deformation variables may still yield reliable predictions for the critical buckling load.

곡선박스거더교의 뒤틀림효과에 대한 연구 (A Study of the Distortional Effect on Curved Box Girder Bridge)

  • 뉴웬반반;한택희;김성남;강영종
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.525-530
    • /
    • 2007
  • Although just developed in recent years, curved box girder has widely used in modern highway system due to their load resistance capacity as well as aesthetic considerations. According to recent literature reviews on curved box girder designs, distortional load was not considered as much as it deserves to be. In practice, the effect of distributional force is very small in straight bridge systems but yet unknown how it is in curved bridge systems. For the reason, this paper will show up an extensive parametric study on distortional behavior of curved box girder with trapezoidal section. Based on Dabrowski formulas, using finite element method, various bridges were investigated. In this study, following parameters will be included: span length, curvature radius, section height, section width, and internal section angle (web slope). From the obtained results, some initial geometric parameters are proposed for curved box girder bridges.

  • PDF

Elastic distortional buckling of cold-formed steel Z-Beams with stiffened holes using reduced thickness

  • Nasam S. Khater;Mahmoud H. El-Boghdadi;Nashwa M. Yossef
    • Steel and Composite Structures
    • /
    • 제51권3호
    • /
    • pp.225-241
    • /
    • 2024
  • For several reasons, cold-formed steel (CFS) beams are often manufactured with holes. Nevertheless, because of holes, the reduction in the web area causes a decrease in the bending strength. Edge stiffeners are presently added around the holes to improve the bending strength of flexural members. Therefore, this research studies CFSZ-beams with stiffened holes and investigates how edge stiffener affects bending strength and failure modes. Nonlinear analysis was carried out using ABAQUS software and the developed finite element (FE) model was verified against tests from previous studies. Using the verified FE model, a parametric study of 104 FE models was conducted to investigate the influence of key parameters on bending strength of Z- sections. The results indicated that the effect of holes is less noticeable in very thin Z-sections. Moreover, adding edge stiffeners around the holes improves the flexural capacity of Z-beams and sometimes restores the original bending capacity. Because the computational techniques used to solve the CFS buckling mode with stiffened holes are still unclear, a numerical method using constrained and unconstrained finite strip method (CUFSM) software was proposed to predict the elastic distortional buckling moment for a wide variety of CFSZ-sections with stiffened holes. A numerical method with two procedures was applied and validated. Upon comparison, the numerical method accurately predicted the distortional buckling moment of CFS Z-sections with stiffened holes.

제형 단면을 갖는 곡선 박스거더교량의 뒴 뒤틀림 특성에 대한 매개변수 연구 (Parametric Study on Trapezoidal Section in Curved Box Girder Bridge Including Distortional Warping)

  • Nguyen Van, Ban;Kim, Sung-Nam;Kim, Seung-Jun;Kang, Young-Jong
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2007년도 정기총회 및 학술발표대회
    • /
    • pp.297-302
    • /
    • 2007
  • 최근에 빠른 발전을 이루고 있기는 하나, 하중 저항 계수나 미관효과 면에서 박스 거더를 고속도로 분야에 폭넓게 사용하고 있는 실정이다. 최근의 박스 거더 설계를 기반으로 살펴보면 뒤틀림 하중은 그다지 고려되지 않았다. 특히 직선교에서는 뒤틀림 하중의 효과가 작지만 곡선에서는 어떻게 작용하는지 조차 알려진 것이 없었다. 그러한 이유에서 이 연구는 뒤틀림 거동에 미치는 주요한 변수들에 대해 다루었다. 그리고 유한요소법을 사용하는 Dabrowski formula를 바탕으로 하여 다양한 변수의 교량에 대해 연구하였다. 이 연구에서는 다음과 같은 변수들이 사용된다. : 지간장, 곡률반경, 단면높이, 단면폭, 그리고 내부단면각(internal section angle) 연구된 결과로부터 적당한 초기 기하형상에 대한 변수들을 구할 수 있을 것이다.

  • PDF

Distortional buckling calculation method of steel-concrete composite box beam in negative moment area

  • Zhou, Wangbao;Li, Shujin;Jiang, Lizhong;Huang, Zhi
    • Steel and Composite Structures
    • /
    • 제19권5호
    • /
    • pp.1203-1219
    • /
    • 2015
  • 'Distortional buckling' is one of the predominant buckling types that may occur in a steel-concrete composite box beam (SCCBB) under a negative moment. The key factors, which affect the buckling modes, are the torsional and lateral restraints of the bottom plate of a SCCBB. Therefore, this article investigates the equivalent lateral and torsional restraint rigidity of the bottom plate of a SCCBB under a negative moment; the results of which show a linear coupling relationship between the applied forces and the lateral and/or torsional restraint stiffness, which are not depended on the cross-sectional properties of a SCCBB completely. The mathematical formulas for calculating the lateral and torsional restraint rigidity of the bottom plate can be used to estimate: (1) the critical distortional buckling stress of SCCBBs under a negative moment; and (2) the critical distortional moment of SCCBBs. This article develops an improved calculation method for SCCBBs on an elastic foundation, which takes into account the coupling effect between the applied forces and the lateral and/or torsional restraint rigidity of the bottom plate. This article analyzes the accuracy of the following calculation methods by using 24 examples of SCCBBs: (1) the conventional energy method; (2) the improved calculation method, as it has been derived in this article; and (3) the ANSYS finite element method. The results verify that the improved calculation method, as it has been proved in this article, is more accurate and reliable than that of the current energy method, which has been noted in the references.