Acknowledgement
Supported by : National Natural Science Function of China, Central Universities of China
References
- Atanackovic, T.M. and Guran, A. (2012), Theory of Elasticity for Scientists and Engineers, Springer-Verlag New York Inc., New York, NY, USA.
- Bradford, M.A. (1988), "Buckling of elastically restrained beams with web distortions", Thin-Wall. Struct., 6(4), 287-304. https://doi.org/10.1016/0263-8231(88)90005-5
- Bradford, M.A. and Gao, Z. (1992), "Distortional buckling solutions for continuous composite beams", J. Struct. Eng., 118(1), 73-89. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:1(73)
- Bradford, M.A. and Kemp, A.R. (2000), "Buckling in continuous composite beams", Prog. Struct. Eng. Mater., 2(2), 169-178. https://doi.org/10.1002/1528-2716(200004/06)2:2<169::AID-PSE20>3.0.CO;2-E
- British Standards Institution (1982), Code of Practice for Design of Steel Bridge, BS5400: Part 3, London, UK.
- Champenoy, D., Corfdir, A. and Corfdir, P. (2014), "Calculating the critical buckling force in compressed bottom flanges of steel-concrete composite bridges", Eur. J. Environ. Civ. Eng., 18(3), 271-292. https://doi.org/10.1080/19648189.2013.872581
- Chen, S. (1992), "Instability of composite beams in hogging bending", University of Warwick, Coventry, UK.
- Chen, S. (2005), ""Experimental study of prestressed steel-concrete composite beams with external tendons for negative moments", J. Construct. Steel Res., 61(12), 1613-1630. https://doi.org/10.1016/j.jcsr.2005.05.005
- Chen, S. and Jia, Y. (2010), "Numerical investigation of inelastic buckling of steel-concrete composite beams prestressed with external tendons", Thin-Wall. Struct., 48(3), 233-242. https://doi.org/10.1016/j.tws.2009.10.009
- Chen, W. and Ye, J. (2010), "Elastic lateral and restrained distortional buckling of doubly symmetric I-beams", Int. J. Struct. Stab. Dy., 10(05), 983-1016. https://doi.org/10.1142/S0219455410003865
- Gara, F., Ranzi, G. and Leoni, G. (2011), "Simplified method of analysis accounting for shear-lag effects in composite bridge decks", J. Construct. Steel Res., 67(10), 1684-1697. https://doi.org/10.1016/j.jcsr.2011.04.013
- Goltermann, P. and Svensson, S. (1988), "Lateral distortional buckling: Predicting elastic critical stress", J. Struct. Eng., 114(7), 1606-1625. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:7(1606)
- Ipe, T.V., Bai, H.S., Vani, K.M. and Iqbal, M.M.Z. (2013), "Flexural behavior of cold-formed steel concrete composite beams", Steel Compos. Struct., Int. J., 14(2), 105-120. https://doi.org/10.12989/scs.2013.14.2.105
- Jaberzadeh, E., Azhari, M. and Boroomand, B. (2013), "Thermal buckling of functionally graded skew and trapezoidal plates with different boundary conditions using the element-free Galerkin method", Eur. Mech.- A/Solids., 42, 18-26. https://doi.org/10.1016/j.euromechsol.2013.03.006
- Jia, Y. and Chen, S. (2009), "Buckling coefficient of steel-concrete composite beams in negative bending", Eng. Mech., 26(11), 121-126.
- Jiang, L., Qi, J., Scanlon, A. and Sun, L. (2013), "Distortional and local buckling of steel-concrete composite box-beam", Steel Compos. Struct., Int. J., 14(3), 243-265. https://doi.org/10.12989/scs.2013.14.3.243
- Johnson, P.R. and Fan, C.K.R. (1991), "Distortional lateral buckling of continuous composite beams", Proceedings of the ICE-Structures and Buildings, 91(1), 131-161.
- Lawson, M.R. and Rackham, W.J. (1989), Design of Haunched Composit e Beams in Buildings, Steel Construction Institution, Ascot.
- Li, J., Huo, Q., Li, X., Kong, X. and Wu, W. (2014), "Dynamic stiffness analysis of steel-concrete composite beams", Steel Compos. Struct., Int. J., 16(6), 577-593. https://doi.org/10.12989/scs.2014.16.6.577
- Liu, C., Ke, L.L., Wang, Y.S., Yang, J. and Kitipornchai, S. (2014), "Buckling and post-buckling of size-dependent piezoelectric Timoshenko nanobeams subject to thermo-electro-mechanical loadings", Int. J. Struct. Stab. Dy., 14(03), 1350067. https://doi.org/10.1142/S0219455413500673
- Ruocco, E. and Minutolo, V. (2014), "Buckling analysis of mindlin plates under the green-lagrange strain hypothesis", Int. J. Struct. Stab. Dy., 15(06), 1450079. https://doi.org/10.1142/S0219455414500795
- Svensson, S.E. (1985), "Lateral buckling of beams analysed as elastically supported columns subject to a varying axial force", J. Construct. Steel Res., 5(3), 179-193. https://doi.org/10.1016/0143-974X(85)90002-1
- Swedish Institute of Steel Construction (1982), Swedish Code for Light-Aauge Metal Structures, Stockholm, Sweden.
- Timoshenko, S. (2009), Theory of Elastic Stability, Dover Publications Inc, New York, NY, USA.
- Tinh, Q.B. and Minh, N.N. (2013), "Meshfree Galerkin Kriging model for bending and buckling analysis of simply supported laminated composite plates", Int. J. Comp. Meth.-Sing., 10(03), 1350011. https://doi.org/10.1142/S0219876213500114
- Tong, G. and Xia, J. (2007), "Buckling of I-sectional steel beams loaded by negative moments", Prog. Steel Build. Struct., 9(1), 46-51.
- Wang, D. and Peng, H. (2013), "A Hermite reproducing kernel Galerkin meshfree approach for buckling analysis of thin plates", Comput. Mech., 51(6), 1013-1029. https://doi.org/10.1007/s00466-012-0784-9
- Williams, F.W. and Jemah, A.K. (1987), "Buckling curves for elastically supported columns with varying axial force, to predict lateral buckling of beams", J. Constuct. Steel Res., 7(2), 133-147. https://doi.org/10.1016/0143-974X(87)90025-3
- Ye, J. and Chen, W. (2013), "Elastic restrained distortional buckling of steel-concrete composite beams based on elastically supported column method", Int. J. Struct. Stab. Dy., 13(1), 1-29. https://doi.org/10.1007/s13296-013-1001-1
- Zhou, W., Jiang, L. and Yu, Z. (2012), "The distortional buckling calculation formula of the steel-concrete composite beams in the negative moment region", Chinese J. Computat. Mech., 29(3), 446-450.
- Zhou, W., Jiang, L., Kang, J. and Bao, M. (2014), "Distortional buckling analysis of steel-concrete composite girders in negative moment area", Math. Probl. Eng., 2014(1), 1-10.
- Zhou, W., Li, S., Jiang, L. and Qin, S. (2015), "Vibration analysis of steel-concrete composite box beams considering shear lag and slip", Math. Probl. Eng., 2015(1), 1-8.
Cited by
- Natural vibration analysis of steel–concrete composite box beam using improved finite beam element method 2018, https://doi.org/10.1177/1369433217734638
- Study on flexural capacity of simply supported steel-concrete composite beam vol.21, pp.4, 2016, https://doi.org/10.12989/scs.2016.21.4.829
- Flexural natural vibration characteristics of composite beam considering shear deformation and interface slip vol.20, pp.5, 2016, https://doi.org/10.12989/scs.2016.20.5.1023
- Flexural stiffness of steel-concrete composite beam under positive moment vol.20, pp.6, 2016, https://doi.org/10.12989/scs.2016.20.6.1369
- Refined nonlinear finite element modelling towards ultimate bending moment calculation for concrete composite beams under negative moment vol.116, 2017, https://doi.org/10.1016/j.tws.2017.02.011
- Investigation on the Structural Behavior of Shear Walls with Steel Truss Coupling Beams under Seismic Loading vol.2018, pp.1687-8442, 2018, https://doi.org/10.1155/2018/5602348
- Distortional buckling of cold-formed lipped channel columns subjected to axial compression vol.23, pp.3, 2017, https://doi.org/10.12989/scs.2017.23.3.331
- Reliability analysis-based conjugate map of beams reinforced by ZnO nanoparticles using sinusoidal shear deformation theory vol.28, pp.2, 2015, https://doi.org/10.12989/scs.2018.28.2.195
- Effect of residual stress and geometric imperfection on the strength of steel box girders vol.34, pp.3, 2015, https://doi.org/10.12989/scs.2020.34.3.423
- Analysis of rotational end restraint for cross-beams of railway through truss bridges vol.35, pp.1, 2015, https://doi.org/10.12989/scs.2020.35.1.029