• Title/Summary/Keyword: distortional buckling

Search Result 34, Processing Time 0.016 seconds

Inelastic distortional buckling of hot-rolled I-section beam-columns

  • Lee, Dong-Sik
    • Steel and Composite Structures
    • /
    • v.4 no.1
    • /
    • pp.23-36
    • /
    • 2004
  • The inelastic lateral-distortional buckling of doubly-symmetric hot-rolled I-section beam-columns subjected to a concentric axial force and uniform bending with elastic restraint which produce single curvature is investigated in this paper. The numerical model adopted in this paper is an energy-based method which leads to the incremental and iterative solution of a fourth-order eigenproblem, with very rapid solutions being obtained. The elastic restraint considered in this paper is full restraint against translation, but torsional restraint is permitted at the tension flange. Hitherto, a numerical method to analyse the elastic and inelastic lateral-distortional buckling of restrained or unrestrained beam-columns is unavailable. The prediction of the inelastic lateral-distortional buckling load obtained in this study is compared with the inelastic lateral-distortional buckling of restrained beams and the inelastic lateral-torsional buckling solution, by suppressing the out-of-plane web distortion, is published elsewhere and they agree reasonable well. The method is then extended to the lateral-distortional buckling of continuously restrained doubly symmetric I-sections to illustrate the effect of web distortion.

Distortional and local buckling of steel-concrete composite box-beam

  • Jiang, Lizhong;Qi, Jingjing;Scanlon, Andrew;Sun, Linlin
    • Steel and Composite Structures
    • /
    • v.14 no.3
    • /
    • pp.243-265
    • /
    • 2013
  • Distortional and local buckling are important factors that influences the bearing capacity of steel-concrete composite box-beam. Through theoretical analysis of distortional buckling forms, a stability analysis calculation model of composite box beam considering rotation of steel beam top flange is presented. The critical bending moment calculation formula of distortional buckling is established. In addition, mechanical behaviors of a steel beam web in the negative moment zone subjected separately to bending stress, shear stress and combined stress are investigated. Elastic buckling factors of steel web under different stress conditions are calculated. On the basis of local buckling analysis results, a limiting value for height-to thickness ratio of a steel web in the elastic stage is proposed. Numerical examples are presented to verify the proposed models.

Inelastic distortional buckling of cantilevers

  • Lee, Dong-Sik;Bradford, Mark Andrew
    • Steel and Composite Structures
    • /
    • v.3 no.1
    • /
    • pp.1-12
    • /
    • 2003
  • Cantilevers are unique statically determinate structural elements with respect to their mode of overall buckling, in that the tension flange is the critical flange under gravity loading, and is the flange that deflects greatest during overall buckling. While this phenomenon does not complicate the calculation of the lateral buckling load, either theoretically or in structural design codes, it has been shown in previous research that the influence of distortion in the elastic buckling of cantilevers is not the same as that experienced in the elastic buckling of simply supported beams. This paper extends the study of the distortional buckling of cantilevers into the hitherto unconsidered inelastic range of structural response. A finite element method for studying the inelastic bifurcative instability of members whose cross-sections may distort during buckling is described, and the efficacy of the method is demonstrated. It is then used to study the inelastic distortional buckling of hot-rolled I-section cantilevers with two common patterns of residual stresses, and which may be restrained elastically from buckling by other structural elements.

Distortional buckling of cold-formed lipped channel columns subjected to axial compression

  • Zhou, Wangbao;Jiang, Lizhong
    • Steel and Composite Structures
    • /
    • v.23 no.3
    • /
    • pp.331-338
    • /
    • 2017
  • Cold-formed lipped channel columns (CFLCCs) have been widely used in light gauge steel constructions. The distortional buckling is one of the important buckling modes for CFLCCs and the distortional buckling critical load depends significantly on the rotational restrain stiffness generated by the web to the lipped flange. First, a simplified explicit expression for the rotational restraint stiffness of the lipped flange has been derived. Using the expression, the characteristics of the rotational restraint stiffness of the lipped flange have been investigated. The results show that there is a linear coupling relationship between the applied forces and the rotational restraint stiffness of the lipped flange. Based on the explicit expression of the rotational restraint stiffness of the lipped flange, a simplified analytical formula has been derived which can determine the elastic distortional buckling critical stress of the CFLCCs subjected to axial compression. The simplified analytical formula developed in this study has been shown to be accurate through the comparisons with results from the distortional buckling analyses using the ANSYS finite element software. The developed analytical formula is easy to apply, and can be used directly in practical design and incorporated into future design codes and guidelines.

The Compressive Strength of Longitudinally Stiffened Plates Undergoing Local and Distortional Buckling (국부좌굴과 뒤틀림좌굴이 발생하는 종방향 보강재로 보강된 강판의 압축강도)

  • Park, Ho-Sang;Seo, Sang-Jung;Kwon, Young-Bong
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.3
    • /
    • pp.219-228
    • /
    • 2010
  • This paper describes an experimental research on the structural behavior and the ultimate strength of longitudinally stiffened plates subjected to local, distortional, or mixed-mode buckling under compression. The stiffened plate undergoes local, distortional, or interactive local-distortional buckling according to the flexural rigidity of the plate's longitudinal stiffeners and the width-thickness ratios of the sub-panels of the stiffened plate. A significant post-buckling strength in the local and distortional modes affects the ultimate strength of the longitudinally stiffened plate. Compression tests were conducted on stiffened plates that were fabricated from 4mm-thick SM400 steel plates with a nominal yield stress of 235MPa. A simple strength formula for the Direct Strength Method based on the test results was proposed. This paper proves that the Direct Strength Method can properly predict the ultimate strength of stiffened plates when the local buckling and distortional buckling occur simultaneously or nearly simultaneously.

Distortional buckling of I-steel concrete composite beams in negative moment area

  • Zhou, Wangbao;Li, Shujin;Huang, Zhi;Jiang, Lizhong
    • Steel and Composite Structures
    • /
    • v.20 no.1
    • /
    • pp.57-70
    • /
    • 2016
  • The predominant type of buckling that I-steel concrete composite beams experience in the negative moment area is distortional buckling. The key factors that affect distortional buckling are the torsional and lateral restraints by the bottom flange. This study thoroughly investigates the equivalent lateral and torsional restraint stiffnesses of the bottom flange of an I-steel concrete composite beam under negative moments. The results show a coupling effect between the applied forces and the lateral and torsional restraint stiffnesses of the bottom flange. A formula is proposed to calculate the critical buckling stress of the I-steel concrete composite beams under negative moments by considering the lateral and torsional restraint stiffnesses of the bottom flange. The proposed method is shown to better predict the critical bending moment of the I-steel composite beams. This article introduces an improved method to calculate the elastic foundation beams, which takes into account the lateral and torsional restraint stiffnesses of the bottom flange and considers the coupling effect between them. The results show a close match in results from the calculation method proposed in this paper and the ANSYS finite element method, which validates the proposed calculation method. The proposed calculation method provides a theoretical basis for further research on distortional buckling and the ultimate resistance of I-steel concrete composite beams under a variable axial force.

Distortional buckling formulae for cold-formed steel rack-section members

  • Silvestre, N.;Camotim, D.
    • Steel and Composite Structures
    • /
    • v.4 no.1
    • /
    • pp.49-75
    • /
    • 2004
  • The paper derives, validates and illustrates the application of GBT-based formulae to estimate distortional critical lengths and bifurcation stress resultants in cold-formed steel rack-section columns, beams and beam-columns with arbitrarily inclined mid-stiffeners and four support conditions. After a brief review of the Generalised Beam Theory (GBT) basics, the main concepts and procedures employed to obtain the formulae are addressed. Then, the GBT-based estimates are compared with exact results and, when possible, also with values yielded by formulae due to Lau and Hancock, Hancock and Teng et al. A few remarks on novel aspects of the rack-section beam-column distortional buckling behaviour, unveiled by the GBT-based approach, are also included.

Post buckling mechanics and strength of cold-formed steel columns exhibiting Local-Distortional interaction mode failure

  • Muthuraj, Hareesh;Sekar, S.K.;Mahendran, Mahen;Deepak, O.P.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.5
    • /
    • pp.621-640
    • /
    • 2017
  • This paper reports the numerical investigation conducted to study the influence of Local-Distortional (L-D) interaction mode buckling on post buckling strength erosion in fixed ended lipped channel cold formed steel columns. This investigation comprises of 81 column sections with various geometries and yield stresses that are carefully chosen to cover wide range of strength related parametric ratios like (i) distortional to local critical buckling stress ratio ($0.91{\leq}F_{CRD}/F_{CRL}{\leq}4.05$) (ii) non dimensional local slenderness ratio ($0.88{\leq}{\lambda}_L{\leq}3.54$) (iii) non-dimensional distortional slenderness ratio ($0.68{\leq}{\lambda}_D{\leq}3.23$) and (iv) yield to non-critical buckling stress ratio (0.45 to 10.4). The numerical investigation is carried out by conducting linear and non-linear shell finite element analysis (SFEA) using ABAQUS software. The non-linear SFEA includes both geometry and material non-linearity. The numerical results obtained are deeply analysed to understand the post buckling mechanics, failure modes and ultimate strength that are influenced by L-D interaction with respect to strength related parametric ratios. The ultimate strength data obtained from numerical analysis are compared with (i) the experimental tests data concerning L-D interaction mode buckling reported by other researchers (ii) column strength predicted by Direct Strength Method (DSM) column strength curves for local and distortional buckling specified in AISI S-100 (iii) strength predicted by available DSM based approaches that includes L-D interaction mode failure. The role of flange width to web depth ratio on post buckling strength erosion is reported. Then the paper concludes with merits and limitations of codified DSM and available DSM based approaches on accurate failure strength prediction.

Buckling of post-tensioned composite beams

  • Bradford, M.A.
    • Structural Engineering and Mechanics
    • /
    • v.2 no.1
    • /
    • pp.113-123
    • /
    • 1994
  • A method for computing the elastic buckling prestressing force of a post-tensioned composite steel-concrete tee-beam is presented. The method is based on a virtual work formulation, and incorporates the restraint provided by the concrete slab to the buckling displacements of the steel beam. The distortional buckling solutions are shown to be given by a quadratic equation. The application of the analysis to calculation buckling strengths is given, based on codified rules for beam-columns. Conclusions are then drawn on the importance of distortional buckling when a post-tensioned composite beam is stressed during jacking.

Elastic lateral-distortional buckling of I-beams and the Meck Plot

  • Zirakian, Tadeh;Nojoumi, Seyed Ali
    • Structural Engineering and Mechanics
    • /
    • v.37 no.3
    • /
    • pp.297-307
    • /
    • 2011
  • Meck Plot is an adapted version of the well-known Southwell method to the case of lateral-torsional buckling, which indeed reflects the physical inter-dependence of lateral flexure (lateral displacement) and torsion (rotation) in the structure. In the recent reported studies, it has been shown experimentally and theoretically that lateral displacement of an I-beam undergoing elastic lateral-distortional mode of buckling is interestingly directly coupled with other various deformation characteristics such as web transverse strain, web longitudinal strain, vertical deflection, and angles of twist of top and bottom flanges, and consequently good results have been obtained as a result of application of the Meck's method on lateral displacement together with each of the aforementioned deformation variables. In this paper, it is demonstrated that even web transverse and longitudinal strains, vertical deflection, and angles of twist of top and bottom flanges of an I-beam undergoing elastic lateral-distortional buckling are two-by-two directly coupled and the application of the Meck Plot on each pair of these deformation variables may still yield reliable predictions for the critical buckling load.