References
- Bambach, M., Merrick, J. and Hancock G.J. (1998), "Distortional buckling formulae for thin-walled channel and Z-sections with return lips", Proc. of 14th Int. Specialty Conf. on Cold-Formed Steel Structures, St. Louis, October 15-16, 21-37.
- Bradford, M. and Azhari, M. (1995), "Buckling of plates with different end conditions using the finite strip method", Comput. Struct., 56(1), 75-83. https://doi.org/10.1016/0045-7949(94)00528-B
- Davies, J.M., Leach, P. and Heinz, D. (1994), "Second-order generalised beam theory", J. Constructional Steel Research, 31(2-3), 221-241. https://doi.org/10.1016/0143-974X(94)90011-6
- Davies, J.M. and Jiang, C. (1998), "Design for distortional buckling", J. Constructional Steel Research, 46(1-3), 174. (CD-ROM paper #104) https://doi.org/10.1016/S0143-974X(98)00107-2
- Hancock, G.J. (1985), "Distortional buckling of steel storage rack columns", J. Struct. Eng. (ASCE), 111(12), 2770-2783. https://doi.org/10.1061/(ASCE)0733-9445(1985)111:12(2770)
- Hancock, G.J. (1997), "Design for distortional buckling of flexural members", Thin-Walled Structures, 27(1), 3-12. https://doi.org/10.1016/0263-8231(96)00020-1
- Lau, S. and Hancock, G.J. (1987), "Distortional buckling formulae for channel columns", J. Struct. Eng. (ASCE), 113(5), 1063-1078. https://doi.org/10.1061/(ASCE)0733-9445(1987)113:5(1063)
- Lau, S. (1988), "Distortional buckling of thin-walled columns", Ph.D. Thesis, School of Civil and Mining Engineering, University of Sydney.
- Schafer, B. (1997), "Cold-formed steel behavior and design: analytical and numerical modelling of elements and members with longitudinal stiffeners", Ph.D. Thesis, Cornell University.
- Schardt, R. (1989), Verallgemeinerte Technische Biegetheorie, Springer Verlag, Berlin. (German)
- Schardt, R. (1994a), "Generalized beam theory - an adequate method for coupled stability problems", Thin- Walled Structures, 19(2-4), 161-180. https://doi.org/10.1016/0263-8231(94)90027-2
- Schardt, R. (1994b), "Lateral torsional and distortional buckling of channel and hat-sections", J. Constructional Steel Research, 31(2-3), 243-265. https://doi.org/10.1016/0143-974X(94)90012-4
- Silvestre, N., Nagahama, K., Camotim, D. and Batista, E. (2002), "GBT-based distortional buckling formulae for thin-walled rack-section columns and beams", Advances in Steel Structures (ICASS'02), Chan, S.L., Teng, J.G. and Chung, K.F. (eds.), Elsevier, Hong Kong, December 9-11, 341-350 (vol. 1).
- Silvestre, N. and Camotim, D. (2002a), "First order generalised beam theory for arbitrary orthotropic materials", Thin-Walled Structures, 40(9), 755-789. https://doi.org/10.1016/S0263-8231(02)00025-3
- Silvestre, N. and Camotim, D. (2002b), "Second order generalised beam theory for arbitrary orthotropic materials", Thin-Walled Structures, 40(9), 791-820. https://doi.org/10.1016/S0263-8231(02)00026-5
- Silvestre, N. and Camotim, D. (2003). "Distortional buckling formulae for cold-formed steel C and Z-section members", submitted for publication.
- Standards Association of Australia (1996), The Australian/New Zealand Cold-Formed Steel Structures Standard, AS/NZS 4600.
- Teng, J.G., Yao, J. and Zhao, Y. (2003), "Distortional buckling of channel beam-columns", Thin-Walled Structures, 41(7), 595-617. https://doi.org/10.1016/S0263-8231(03)00007-7
- Van der Maas, C.J. (1954), "Charts for the calculation of the critical compressive stress for local instability of columns with hat sections", J. the Aeronautical Sciences, 21(6), 399-403. https://doi.org/10.2514/8.3049
- Waterloo Maple Software (2001). MAPLE V (release 7), University of Waterloo, Canada.
Cited by
- Distortional buckling formulae for cold-formed steel C and Z-section members vol.42, pp.11, 2004, https://doi.org/10.1016/j.tws.2004.05.001
- On the mechanics of distortion in thin-walled open sections vol.48, pp.7, 2010, https://doi.org/10.1016/j.tws.2010.02.001
- GBT formulation to analyse the buckling behaviour of thin-walled members with arbitrarily ‘branched’ open cross-sections vol.44, pp.1, 2006, https://doi.org/10.1016/j.tws.2005.09.005
- Deformation modes for the post-critical analysis of thin-walled compressed members by a Koiter semi-analytic approach vol.110-111, 2017, https://doi.org/10.1016/j.ijsolstr.2016.09.010
- GBT-based semi-analytical solutions for the plastic bifurcation of thin-walled members vol.47, pp.1, 2010, https://doi.org/10.1016/j.ijsolstr.2009.09.013
- Simple Formulate for Distortional Buckling Load of Liffed Channel Aluminium Alloy Members under Axial Force vol.378-379, pp.1662-8985, 2011, https://doi.org/10.4028/www.scientific.net/AMR.378-379.230
- Nonlinear behavior of axially loaded back-to-back built-up cold-formed steel un-lipped channel sections vol.28, pp.2, 2004, https://doi.org/10.12989/scs.2018.28.2.233
- Flexural behavior of steel storage rack base-plate upright connections with concentric anchor bolts vol.33, pp.3, 2019, https://doi.org/10.12989/scs.2019.33.3.357
- Distortional Buckling of Cold-Formed Steel Flanges under Stress Gradient vol.146, pp.9, 2004, https://doi.org/10.1061/(asce)st.1943-541x.0002764
- Improving the GBT-based buckling analysis of restrained cold-formed steel members by considering constrained deformation modes vol.165, pp.None, 2004, https://doi.org/10.1016/j.tws.2021.107928