• Title/Summary/Keyword: Dissolved Organic Carbon(DOC)

Search Result 178, Processing Time 0.021 seconds

금속 이온을 이용한 Bacillus Stearothermophilus 호열성 단백질 분해효소의 역가 향상 및 호열 ${\cdot}$ 호기성 소화공정에의 응용

  • Kim, Yeong-Gi;Bae, Jin-Hye;Lee, Won-Hong;Choe, Jeong-U
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.167-170
    • /
    • 2000
  • Proteolytic hydrolysis is one of the main enzymatic reaction of waste activated sludge (WAS) digestion. Pretense excreted from Bacillus stearothermophilus (ATCC 31197) showed optimum temperature of $75^{\circ}C$ for maxium heat stable proteolytic activity against azo casein. The dependency of $Ca^{2+}$, $Zn^{2+}$ on heat stability of proteolytic enzymes were measured with various concentrations. It was shown that $Ca^{2+}$ ion enhanced heat stability of these enzymes. Then thermophilic aerobic digestion (TAD) was performed using B. sterothermophilus with the addition of divalent ions. Performance of TAD process with ATCC 31197 activated by $Ca^{2+}$, $Zn^{2+}$ions in terms of dissolved organic carbon (DOC) concentration, extracellular protein concentration, and scanning electrion microscopy (SEM) analysis. The best result of protein reduction concentration in digestion test was obtained with the addition of 2 mM $Ca^{2+}$ ion.

  • PDF

Characteristics of the Disinfection Byproducts Formation in Electrolysis Disinfection of Drinking Water (음용수의 전기분해 소독과정에서의 소독부산물 생성특성)

  • Yun, Kyeong-Ae;Park, Sung-Bin;Kim, Yeong-Kwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.1
    • /
    • pp.69-75
    • /
    • 2016
  • This study was conducted to examine the byproducts formation characteristics at the water treatment plants which applying electrolysis as a disinfection process in Gangwondo, Korea. Total of forty plants located in Gangwon Province, Korea were selected for the study. Correlation between dissolved organic carbon(DOC) and $SUVA_{254}$ was not clear. Among the species of the disinfection byproducts(DBPs), chlorate and trihalomethanes(THMs) accounted for 76% and 14% of DBPs, respectively. The effect of DOC or $SUVA_{254}$ on DBPs formation was not clearly demonstrated. The increased amount of THMs due to the raw water bromide content was found primarily in the form of chloroform, and the percent fraction of BDCM(bromodichloromethane) and DBCM(Dibromochloromethnae) was relatively insignificant. When the value of $SUVA_{254}$ was greater than $2L/mg{\cdot}m$, the percent fraction of BDCM and DBCM decreased while percent fraction of CF(chloroform) increased.

Variation of Natural Organic Matter Characteristics through Water Treatment Processes (정수공정별 천연유기물질의 특성 변화)

  • Hwang, Jeong-Eun;Kang, Lim-Seok;Kim, Seung-Hyun;Yoon, Cho-Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.7
    • /
    • pp.1253-1261
    • /
    • 2000
  • Natural organic matter (NOM) which occurs ubiquitously in both surface and ground waters, consists of both humic (i.e., humic and fulvic acids) and nonhumic components. NOM in general as well as certain constituents are problematic in water treatment. From a regulatory perspective, concerns focus upon the role of NOM constituents as disinfection byproduct (DBP) precursors. The fractionation of NOM through water treatment processes can provide insight into treatment process selection and applicability. Problematic NOM fractions can be targeted for removal or transformation. Significant source-related differences in NOM were observed among various source waters. This study found that bulk Dissolved Organic Carbon (DOC) concentration was hardly removed by oxidation process. Oxidation transformed high Molecular Weight (MW) hydrophobic fraction into low MW hydrophilic fraction. Ozone reduced s-pecific Ultraviolet Absorbance (SUVA) value more than chlorine. High MW hydrophobic fraction was effectively removed by coagulation process. About 50% of Trihalomethane Formation Potential (THMFP) was removed by coagulation process.

  • PDF

Change of Molecular Weight of Organic Matters through Unit Water Treatment Process and Associated Chlorination Byproducts Formation

  • Sohn, Jin-Sik;Kang, Hyo-Soon;Han, Ji-Hee;Yoon, Yeo-Min
    • Environmental Engineering Research
    • /
    • v.12 no.5
    • /
    • pp.224-230
    • /
    • 2007
  • The objectives of this study were to evaluate the change of molecular weight (MW) profiles in natural organic matter (NOM) through various treatment processes (coagulation, granular activated carbon (GAC), and ozonation) using high performance size exclusion chromatography based on ultraviolet absorbance and dissolved organic detection (HPSEC-UVA-DOC). In addition, relationships between MW profiles and disinfection by-production (DBP) formation were evaluated. Each treatment process results in significant different effects on NOM profiles. Coagulation is effective to remove high molecular weight NOM, while GAC is effective to remove low molecular weight NOM. Ozonation removes only a small portion of NOM, while it induces a significant reduction of UV absorbance due to breakdown of the aromatic groups. All treated waters are chlorinated, and chlorination DBPs such as trihalomethanes (THMs) and haloacetic acids (HAAs) are measured under formation potential conditions. Both THM and HAA formation potentials were significantly reduced through the coagulation process. GAC was more effective to reduce THM formation compared to HAA formation reduction, while ozonation showed significant HAA reduction compared to THM reduction.

A Study on the Degradability of Pharmaceuticals during UV Treatment (자외선 처리시의 의약품류의 분해도에 관한 연구)

  • Kim, Ilho
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.6
    • /
    • pp.902-910
    • /
    • 2012
  • The photodegradation characteristics of 30 pharmaceuticals were investigated by batch experiments using Ultraviolet (UV) reactor. The investigated pharmaceuticals include antibiotics, analgesics and antiarrhythmic agents etc. Tested water was prepared by simultaneously spiking 30 pharmaceuticals into pure water, and each experiment was conducted using 3 types of UV lamps. As a result, batch experiments showed that reactions of all the investigated pharmaceuticals followed pseudo-first order reaction regardless of the applied UV lamps. Among the pharmaceuticals, Cyclophosphamide, 2-Quinoxaline carboxylic acid and Clarithromycin proved to be the most UV-resistant compounds. Contrarily, Ceftiofur, Diclofenac and Ketoprofen were easily degraded by all the UV lamps. Dissolved organic carbon (DOC) concentration hardly changed although the concentration of the pharmaceuticals concentration gradually decreased with time, indicating that the degradation of parent pharmaceuticals may produce their intermediates during UV treatment.

Alkaline Phosphatase Activity in Two Geologically Different Streams in Alabama, U.S.A. (미국 알라바마에서 지질학적으로 다른 두 하천의 Alkaline Phosphatase 활성도)

  • Joo, Gea-Jae;Ward, Amelia K.
    • The Korean Journal of Ecology
    • /
    • v.18 no.1
    • /
    • pp.1-15
    • /
    • 1995
  • Alakline phosphatase activity (AP A) as a phosphorus deficiency measurement in flowing waters and of microhabitats (rocks, wood, leaves, and sediments) was measured and its relationship to flux of nutrients and response to rainfall events were determined for two geologically different streams in west Alabama from August to November. Results indicated water column AP A in both streams had a low correlation with levels of orthophosphate, total organic phosphorus, nitrate, ammonia, dissolved organic carbon, and discharge (r=0.075-0.583; n=g-IU. Communities on rock surfaces showed a higher AP A level than those on wood and leaves. Sediment passed through a $106{\mu}m$ sieve showed 2-9 times higher AP A level than material passed through $425{\mu}m$ sieve. The first storm after drought at Yellow Creek introduced substantial quantities of DOC (2.5 times baseflow concentrations) and $N0_3-N$ (5.8 times baseflow concentrations) which did not affect AP A significantly. The second storm at Little Schultz Creek caused minor changes in nutrient cocentrations; however $N0_3-N$ levels and AP A were drastically lower due to the dilution effect. Retention of stream water AP A at Yellow Creek and Little Schultz Creek on $0.45{\mu}m$ filter (54 and 43%, respectively) and $0.22{\mu}m$ (83 and 77% of total APA. respectively) indicated more free dissolved portion of the enzyme was present at Little Schultz Creek. Little Schultz Creek (with carbonate and with a higher productivity and biomass) showed a consistantly greater AP A activity $(132{\pm}54\;{\mu}M{\cdot}1^{-1}{\cdot}min^{-I};\;n=g)$ than Yellow Creek $(41{\pm}23\;{\mu}M{\cdot}1^{-I}{\cdot}min^{-I}$, with a sandstone substrate; n=l1, $p{\leq}O.OO1)$. Overall, a greater APA on all microhabitats and the presence of more dissolved enzyme in Little Schultz Creek during the study period may indicates it is more P deficient than Yellow Creek.

  • PDF

Properties of Dissolved Organic Carbon (DOC) released by Three Species of Blue- green Algae (남조류에 의해 배출된 용존유기탄소의 특성)

  • Choi, Kwang-Soon;Imai, Akio;Kim, Bom-Chul;Matsushige, Kazuo
    • Korean Journal of Ecology and Environment
    • /
    • v.34 no.1 s.93
    • /
    • pp.20-29
    • /
    • 2001
  • The amount, chemical composition and optical property of extracellular dissolved organic carbon (EOC) by phytoplankton were examined using axenic cultures of Microcystis aeruginosa, Anabaena flos-aquae, and Oscillatoria agardhii. The extracellular organic matter was categorized into five fractions (hydrophobic acids; AHSs, hydrophobic neutrals; HoNs, hydrophilic acids; HiAs, hydrophilic bases; HiBs, and hydrophilic neutrals; HiNs) using three adsorbent resins(XAD-8, cation, and anion). The release pattern and chemical composition of EOC varied with algal species and their growth phases. Percentage of extracellular release increased with age in all cultures. HiAs were the dominant component of EOC in all cultures, whereas the proportion of HiAs decreased with age in all cultures. In contrast, the proportions of HiBs and HiNs increased as cultures aged. In particular, the HiN fraction increased from 0% to 44% of EOC in M. aeruginosa and from 3.0% to 28% in A. flos-aquae, respectively. The proportion of AHSs was higher in the cultures of A. flos-aquae(7.5${\sim}$16%) and O. agardhii (8.7${\sim}$16%) than M. aeruginosa(0.2${\sim}$2.5%). The proportions of AHSs increased with culture age in M. aeruginosa and O. agardhii, but decreased in A. flos-aquae. The specific UV absorbance also varied among species; 1.9 Abs${\cdot}$cm$^{-1}$/mgC${\cdot}$L$^{-1}$ for M. aeruginosa, 3.7 Abs${\cdot}$cm$^{-1}$/mgC${\cdot}$L$^{-1}$ for A. flos-aquae, and 13.0 Abs${\cdot}$cm$^{-1}$/mgC${\cdot}$L^{-1}$ for O. agardhii. The results of this study indicates that DOC excreted by three blue-green algae differed with species and the growth phase.

  • PDF

Application of Enhanced Coagulation for Nakdong River Water Using Aluminium and Ferric Salt Coagulants (낙동강 원수를 대상으로 Al염계 및 Fe염계 응집제를 이용한 고도응집의 적용)

  • Moon, Sin-Deok;Son, Hee-Jong;Yeom, Hoon-Sik;Choi, Jin-Taek;Jung, Chul-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.9
    • /
    • pp.590-596
    • /
    • 2012
  • Enhanced coagulation is best available technologies to treat NOM in water to produce clean drinking water. In this research, the comparison experiments between conventional coagulation (CC) and enhanced coagulation (EC) using 4 type coagulants i.e., ferric chloride, aluminium sulphate (alum), poly aluminium sulphate organic magnesium (PSOM) and poly aluminium chloride (PACl) were performed in terms of surrogate parameters such as dissolved organic carbon (DOC), trihalomethane formation potential (THMFP), haloacetic acid formation potential (HAAFP) and zeta potential variation in order to find out the most effective coagulant and conditions to fit Nakdong River water. When applied to EC process, the turbidity removal efficiency did not increased gradually compared to the CC process when adding coagulants. Furthermore, the removal efficiency of turbidity became decreased much more as coagulants were added increasingly whereas the removal efficiency of DOC, THMFP and HAAFP became increased by 13~18%, 9~18% and 9~18% respectively compared to the CC process. The characteristics of turbidity removal showed relatively high removal efficiency considering the pH variation in entire pH range when using $FeCl_3$ and PACl. Additionally, in case of alum and PSOM steady removal efficiency was shown between pH 5 and pH 8. In terms of DOC surrogate the coagulants including 4 type coagulants indicated high removal efficiency between pH 5 and pH 7. The removal efficiency of dissolved organic matter (DOM) in EC between less than 1 kDa and more than 10 kDa augmented by 11~21% and 16% respectively compared to the CC process. The removal efficiency of hydrophobic and hydrophilic organic matter proved to be increased by 27~38% and 11~15% respectively. In conclusion, the most effective coagulant relating to EC for Nakdong River water was proved to be $FeCl_3$ followed by PSOM, PAC and alum in order.

Efficiency of Activated Carbon Treatment Processing on Raw Water Purification for Nakdong River (활성탄을 이용한 낙동강 상수원수의 수처리 효과)

  • Lim, Young-Sung;Kang, Gwan-Ho;Lee, Hong-Jae;Seo, Dong-Cheol;Heo, Jong-Soo;Sohn, Bo-Kyoon;Cho, Ju-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.21 no.3
    • /
    • pp.208-215
    • /
    • 2002
  • This study was carried out to evaluate the pollutant removal efficiencies of the advanced drinking water treatment using activated carbon process. for raw water, Nakdong river was used. from the activated carbon adsorption experiment the fellowing results were obtained The efficiency of water treatment enhanced with increase in empty bed contact time. Variation of pH was not detected to the bed depth, but DO content gradually decreased with the bed depth. Removal efficiency of $KMnO_4$ consumption, UV254 absorption, DOC and THMFP also were increased by increasing in the bed depth. Transition of adsorption zone from upper parts of the bed to the lower parts were detected as treatment periods increased. Large portion of DOCs were degraded and removed by the microbes growing on the surface of activated carbons. Cell numbers of microbes were estimated over $1.1\times10^7\;cell/cm^3$ at the depth of 20 cm from the surface 126 days after starting operation. The results shown that the activated carbon Inter was successfully acted as a biofilm filter.

Evaluation of Coagulation Characteristics of Fe(III) and Al(III) Coagulant using On-line Monitoring Technique (On-line 모니터링 기법을 이용한 Al염계와 Fe염계 응집제의 응집특성 평가)

  • Son, Hee-Jong;Yoom, Hoon-Sik;Kim, Sang-Goo;Seo, Chang-Dong;Hwang, Young-Do
    • Journal of Environmental Science International
    • /
    • v.23 no.4
    • /
    • pp.715-722
    • /
    • 2014
  • Effects of coagulation types on flocculation were investigated by using a photometric dispersion analyzer (PDA) as an on-line monitoring technique in this study. Nakdong River water were used and alum and ferric chloride were used as coagulants. The aim of this study is to compare the coagulation characteristics of alum and ferric chloride by a photometric dispersion analyzer (PDA). Floc growing rates ($R_v$) in three different water temperatures ($4^{\circ}C$, $16^{\circ}C$ and $30^{\circ}C$) and coagulants doses (0.15 mM, 0.20 mM and 0.25 mM as Al, Fe) were measured. The floc growing rate ($R_v$) by alum was 1.8~2.8 times higher than that of ferric chloride during rapid mixing period, however, for 0.15 mM~0.25 mM coagulant doses the floc growing rate ($R_v$) by ferric chloride was 1.1~2.3 times higher than that of alum in the slow mixing period at $16^{\circ}C$ water temperature. Reasonable coagulant doses of alum and ferric chloride for turbidity removal were 0.1 mM (as Al) and 0.2 mM (as Fe), respectively, and the removal efficiency of those coagulant doses showed 94% for alum and 97% for ferric chloride. The appropriate coagulant dose of alum and ferric chloride for removing dissolved organic carbon (DOC) showed about 0.3 mM (as Al, Fe) and at this dosage, DOC removal efficiencies were 36% and 44%, and ferric chloride was superior to the alum for removal of the DOC in water.