DOI QR코드

DOI QR Code

Efficiency of Activated Carbon Treatment Processing on Raw Water Purification for Nakdong River

활성탄을 이용한 낙동강 상수원수의 수처리 효과

  • Lim, Young-Sung (Masancity Chilseo Water Treatment Plant) ;
  • Kang, Gwan-Ho (Division of Environment and Agricultural Science, Sunchon National University) ;
  • Lee, Hong-Jae (Division of Applied Life Science, Gyeongsang National University) ;
  • Seo, Dong-Cheol (Division of Applied Life Science, Gyeongsang National University) ;
  • Heo, Jong-Soo (Division of Applied Life Science, Gyeongsang National University) ;
  • Sohn, Bo-Kyoon (Division of Environment and Agricultural Science, Sunchon National University) ;
  • Cho, Ju-Sik (Division of Environment and Agricultural Science, Sunchon National University)
  • 임영성 (마산시칠서정수장) ;
  • 강관호 (순천대학교 환경농업과학부) ;
  • 이홍재 (경상대학교 응용생명과학부) ;
  • 서동철 (경상대학교 응용생명과학부) ;
  • 허종수 (경상대학교 응용생명과학부) ;
  • 손보균 (순천대학교 환경농업과학부) ;
  • 조주식 (순천대학교 환경농업과학부)
  • Published : 2002.09.30

Abstract

This study was carried out to evaluate the pollutant removal efficiencies of the advanced drinking water treatment using activated carbon process. for raw water, Nakdong river was used. from the activated carbon adsorption experiment the fellowing results were obtained The efficiency of water treatment enhanced with increase in empty bed contact time. Variation of pH was not detected to the bed depth, but DO content gradually decreased with the bed depth. Removal efficiency of $KMnO_4$ consumption, UV254 absorption, DOC and THMFP also were increased by increasing in the bed depth. Transition of adsorption zone from upper parts of the bed to the lower parts were detected as treatment periods increased. Large portion of DOCs were degraded and removed by the microbes growing on the surface of activated carbons. Cell numbers of microbes were estimated over $1.1\times10^7\;cell/cm^3$ at the depth of 20 cm from the surface 126 days after starting operation. The results shown that the activated carbon Inter was successfully acted as a biofilm filter.

상수원수를 보다 효과적으로 처리함으로서 양질의 수돗물을 공급하기 위한 기초자료를 얻고자 낙동강 상수원수를 대상으로 활성탄처리에 의한 공탑체류시간 및 활성탄 여층 깊이에 따른 수처리 효율과 생물활성탄으로서의 이용 가능성을 조사한 결과는 다음과 같다. 공탑체류시간(EBCT)에 따른 수처리 효율은 EBCT가 증가 할수록 증가되었으나 운전시간이 경과함에 따라 활성탄 흡착능력은 감소되어 처리효율도 서서히 감소하였다 활성탄 여층 깊이에 따른 pH 변화는 활성탄 층 깊이에 따라 거의 없었으며, DO는 활성탄 층 깊이가 깊을수록 서서히 감소하였다. $KMnO_4$ 소비량, UV254 흡광물질, DOC 및 THMFP 처리효율은 활성탄 표층으로부터 하부로 내려갈수록 증가하였으며, 운전시간이 경과할수록 활성탄 상층부에 형성되어 있던 흡착대가 하부로 이동하였다. DOC의 상당 부분이 활성탄여과지에 서식하는 미생물 작용에 의해 분해 제거되는 것으로 나타났으며, 운전개시 126일 후의 BAC에서 활성탄 표층으로 부터 깊이 20 cm부근에 미생물이 $1.1\times10^7\;cell/cm^3$ 이상 존재하는 것으로 관찰되어 생물활성탄 조건을 만족시키고 있었다.

Keywords

References

  1. 정진성 (1996) 상수도정책방향, 한국수도협회지, 23(12), 3-19
  2. 이현동, 정원식 (1996) 상수 수질오염사고 대비 방안에 관한 연구, 한국수도협회지, 23(12), 20-37
  3. 마산시 (1995) 칠서정수장 고도정수처리 PILOT TEST 보고서
  4. 환경부 (1997) 수돗물에서의 미량유해물질 분석법 연구 및 함유 실태조사 (5차)
  5. Suffet, I. H. and McGuire M. J. (1980) Activated carbon adsorption of organics from the aqueaus phase. J. AWWA. 105-113
  6. Rice, R. G. and Robson C. M. (1982) Biological activated carbon : Enhanced aerobic biological activity in GAC systems, J. AWWA. 78-83
  7. Miller G. W., Rice R. G., Robson C. M., Scullin R. L., Kuhn W. and Wolf H. (1978) An assessment of ozone and chlorine dioxide technologies for treatment of municipal water supplies, U. S. EPA Report No. EPA-600 /2-78-147
  8. Sontheimer, Crittenden, Summers, (1988) Empirical evaluation of collective parameter removal by granular activated carbon, activated carbon for water treatment
  9. Cho, J. S., Lim, Y. S., Lee, H. J. and Heo, J. S. (2001) Effect of ozone treatment for Nakdong river raw water. I. Efficiency of water treatment by conducting batch test of ozonation experiments, J. of the Korean Environmental Sciences Society 10(6), 393-399
  10. Lim, Y. S., Lee, H. J., Lee, D. J., Heo, J. S. and Cho, J. S. (2002) Effect of ozone treatment for Nakdong river raw water, II. Removal of VOCs and algae in raw water by conducting batch test of ozonation experiments, J. of the Korean Environmental Sciences Society. submitted
  11. Lim, Y. S., Kang, G. H., Lee, H. J., Seo, D. C., Lee, D. J., Heo, J. S. and Cho, J. S. (2002) Effect of water treatment for Nakdong river raw water by continuous ozone process. accepted
  12. Lee, B. H., Kim, T. G. (1996) Research Paper : The activation mechanisms of granular activated carbon (GAC) by microorganisms and removal characteristics of water quality parameters in biological activated carbon (BAC) and ozone treatment, J. of Korean Society Of Environmental Engineers 18(10), 1239-1248
  13. 대구광역시 상수도사업본부 (1998) 고도정수처리시설의 효율적인 운영을 위한 실공정 및 Pilot plant를 통한 연구조사
  14. 환경부 (1998) 고도정수기술 고도정수 실용화기술 개발, Vol. Ⅰ, 제2단계 3차년도 연차보고서
  15. Malley, J. P. (1993) The Performance and Microbiology of Ozone-Enhanced Biological Filtration. J. AWWA. p.12-47
  16. Sontheimer, H. and Hubele, C. (1987) The Use of ozone and granular activated carbon in drinking water treatment. in P. M. Huck and P. Toft(eds), Treatment of Drinking Water for organic Contaminants, Pergamom, New York
  17. Sudha Goel, Raymond M. Hozalski, and Edward J. Bouwer. (1995) Biodegradation of NOM : effect of NOM source and ozone dose. J. AWWA. p.90-105
  18. Servais P., Billon G., Ventresque C. and Bablon G. P. (1991) Microbial activity in GAC filters at the Choisyleroi treatment plant. J. AWWA. 83(2), 62-68
  19. Weber W. J., Pirbazari M. and Melson G. L. (1978) Biological growth on activated carbon : an investigation by scanning electron microscopy, Environ. Sci. and Techmol. 12(7), 817-819 https://doi.org/10.1021/es60143a005
  20. Jan E. DeWaters and Francis A. DiCiano. (1990) The Influence of Ozonated Natural Organic Matter on the Biodegradation of a micropollutant in a CAC Bed. J. AWWA. p.69-75
  21. William T. Stringfellow, Kathryn Mallon, and Francis A. DiCiano. (1993) Enumerating and disinfecting bacteria associated with particles released from CAC filteradsorbers. J. AWWA. p.70-80