DOI QR코드

DOI QR Code

낙동강 원수를 대상으로 Al염계 및 Fe염계 응집제를 이용한 고도응집의 적용

Application of Enhanced Coagulation for Nakdong River Water Using Aluminium and Ferric Salt Coagulants

  • 문신득 (부산광역시 상수도사업본부) ;
  • 손희종 (부산광역시 상수도사업본부) ;
  • 염훈식 (부산광역시 상수도사업본부) ;
  • 최진택 (부산광역시 상수도사업본부) ;
  • 정철우 (울산광역시 전략산업기획단)
  • 투고 : 2012.01.03
  • 심사 : 2012.09.22
  • 발행 : 2012.09.28

초록

고도응집 공정은 DBP 전구물질인 NOM을 제거하는 최적기법이다. 본 연구에서는 낙동강 원수를 대상으로 $FeCl_3$, alum, PSOM 및 PACl 응집제를 대상으로 고도응집 공정의 적용시 가장 효과적인 응집제와 응집조건을 DOC, THMFP, HAAFP 및 제타전위 변화를 중심으로 평가하였다. 탁도 제거율은 고도응집을 적용시 기존응집에 비해 제거율의 상승은 없었으며, 일정 응집제 주입량 이상에서는 제거율이 더욱 저하되었으나 DOC, THMFP 및 HAAFP 제거율은 응집제 종류별로 기존응집에 비해 각각 13~18%, 9~18% 및 9~18% 정도 증가하였다. 응집 pH 변화에 따른 탁도 제거특성은 $FeCl_3$와 PACl이 pH 4~10 범위에서 비교적 높은 탁도 제거율을 나타내었고 alum과 PSOM의 경우는 pH 5~8의 범위에서 안정적인 제거율을 나타내었다. DOC는 4종의 응집제 모두 pH 5~7 범위에서 안정적인 제거율을 나타내었다. 고도응집 공정을 적용시 1 kDa 이하 및 10 kDa 이상의 용존 유기물질의 제거율은 각각 11~21% 및 16% 정도 기존응집 공정에 비해 증가하였으며, 소수성 및 친수성 유기물질의 제거율은 각각 27~38% 및 11~15% 정도 증가하였다. 낙동강 원수의 고도응집에 가장 효과적인 응집제로는 $FeCl_3$로 나타났으며, 다음으로 PSOM, PACl 및 alum 순이었다.

Enhanced coagulation is best available technologies to treat NOM in water to produce clean drinking water. In this research, the comparison experiments between conventional coagulation (CC) and enhanced coagulation (EC) using 4 type coagulants i.e., ferric chloride, aluminium sulphate (alum), poly aluminium sulphate organic magnesium (PSOM) and poly aluminium chloride (PACl) were performed in terms of surrogate parameters such as dissolved organic carbon (DOC), trihalomethane formation potential (THMFP), haloacetic acid formation potential (HAAFP) and zeta potential variation in order to find out the most effective coagulant and conditions to fit Nakdong River water. When applied to EC process, the turbidity removal efficiency did not increased gradually compared to the CC process when adding coagulants. Furthermore, the removal efficiency of turbidity became decreased much more as coagulants were added increasingly whereas the removal efficiency of DOC, THMFP and HAAFP became increased by 13~18%, 9~18% and 9~18% respectively compared to the CC process. The characteristics of turbidity removal showed relatively high removal efficiency considering the pH variation in entire pH range when using $FeCl_3$ and PACl. Additionally, in case of alum and PSOM steady removal efficiency was shown between pH 5 and pH 8. In terms of DOC surrogate the coagulants including 4 type coagulants indicated high removal efficiency between pH 5 and pH 7. The removal efficiency of dissolved organic matter (DOM) in EC between less than 1 kDa and more than 10 kDa augmented by 11~21% and 16% respectively compared to the CC process. The removal efficiency of hydrophobic and hydrophilic organic matter proved to be increased by 27~38% and 11~15% respectively. In conclusion, the most effective coagulant relating to EC for Nakdong River water was proved to be $FeCl_3$ followed by PSOM, PAC and alum in order.

키워드

참고문헌

  1. Thurman, E. M. and Malcolm, R. L., "Isolation of natural organic matter by resin adsorption," Environ. Sci. Technol., 15(4), 463-466(1981). https://doi.org/10.1021/es00086a012
  2. Richardson, S. D., "Disinfection by-products and other emerging contaminants in drinking water," Trends Anal. Chem., 22(10), 666-684(2003). https://doi.org/10.1016/S0165-9936(03)01003-3
  3. Jarvis, P., Jefferson, B., Dixon, D. and Parsons, S. A., "Treatment options and their effect on NOM-coagulant floc structures," J. AWWA, 100(1), 64-73(2008).
  4. US EPA, Definitions of Enhanced Coagulation and Enhanced Precipitative Softening, Washing, D.C., (1999).
  5. García, I. and Moreno, L., "Use of GAC after enhanced coagulation for the removal of natural organic matter from water for purification," Water Sci. Technol.: Water Suppl., 9(2), 173-180(2009). https://doi.org/10.2166/ws.2009.292
  6. US EPA, National Exposure Research Laboratory, Office of Research Development, Method 552.2, Cincinnati, Ohio, (1995).
  7. Yan, M., Wang, D., Ni, J., Qu, J., Ni, W. and van Leeuwen, J., "Natural organic matter (NOM) removal in a typical North- China water plant by enhanced coagulation: targets and techniques," Sep. Purif. Technol., 68, 320-327(2009). https://doi.org/10.1016/j.seppur.2009.05.021
  8. Narkis, N. and Rebhun, M., "Stoichiometric relationships between humic and fulvic acid and flocculants," J. AWWA, 69(6), 325-328(1977). https://doi.org/10.1002/j.1551-8833.1977.tb06752.x
  9. Wang, D. S., Sun, W., Xu, Y., Tang, H. X. and Gregory, J., "Speciation stability of inorganic polymer flocculant-PACl," Colloid Surf. A, 243, 1-10(2004). https://doi.org/10.1016/j.colsurfa.2004.04.073
  10. Johnson, P. N. and Amirtharajah, A., "Ferric chloride and aluminum as single and dual coagulants," J. AWWA, 73(5), 232-239(1983).
  11. White, M. C., Thompson, J. D., Harrington, G. W. and Singer, P. C., "Evaluating criteria for enhanced coagulation compliance," J. AWWA, 89(5), 64-77(1997). https://doi.org/10.1002/j.1551-8833.1997.tb08228.x
  12. Liang, L. and Singer, P. C., "Factor influencing formation and relative distribution of haloacetic acids and trihalomethanes in drinking water," Environ. Sci. Technol., 37(13) 2920- 2928(2003). https://doi.org/10.1021/es026230q
  13. Kazpard, V., Lartiges, B. S., Frochot, C., d'Espinose de la Caillerie, J. B., Viriot, M. L., Portal, J. M., Gorner, T. and Bersillon, J. L., "Fate of coagulant species and conformational effects during the aggregation of a model of humic substance with Al13 polycations," Water Res., 40, 1965-1974(2006). https://doi.org/10.1016/j.watres.2006.03.014

피인용 문헌

  1. Comparison of Al(III) and Fe(III) Coagulants for Improving Coagulation Effectiveness in Water Treatment vol.37, pp.6, 2015, https://doi.org/10.4491/KSEE.2015.37.6.325
  2. Comparison of Fe(III) Coagulants and their Characterization for Water Treatment vol.38, pp.4, 2016, https://doi.org/10.4491/KSEE.2016.38.4.169