• Title/Summary/Keyword: Disposal system

Search Result 796, Processing Time 0.023 seconds

Research and Development for Decontamination System of Spent Resin in Hanbit Nuclear Power Plant (한빛원전 폐수지 제염공정 개발연구)

  • Sung, Gi Hong
    • Journal of Radiation Industry
    • /
    • v.9 no.4
    • /
    • pp.217-221
    • /
    • 2015
  • When reactor coolant leaks occur due to cracks of a steam generator's tube, radioactive materials contained in the primary cooling water in nuclear power plant are forced out toward the secondary systems. At this time the secondary water purification resin in the ion exchange resin tower of the steam generator blowdown system is contaminated by the radioactivity of the leaked radioactive materials, so we pack this in special containers and store temporarily because we could not dispose it by ourselves. If steam generator tube leakage occurs, it produces contaminated spent resins annually about 5,000~7,000 liters. This may increase the amount of nuclear waste productions, a disposal working cost and a unit price of generating electricity in the plant. For this reasons, it is required to develop a decontamination process technique for reducing the radioactive level of these resins enough to handle by the self-disposal method. In this research, First, Investigated the structure and properties of the ion exchange resin used in a steam generator blowdown system. Second, Checked for a occurrence status of contaminated spent resin and a disposal technology. Third, identified the chemical characteristics of the waste radionuclides of the spent resin, and examined ionic bonding and separation mechanism of radioactive nuclear species and a spent resin. Finally, we carried out the decontamination experiment using chemicals, ultrasound, microbubbles, supercritical carbon dioxide to process these spent resin. In the case of the spent resin decontamination method using chemicals, the higher the concentration of the drug decontamination efficiency was higher. In the ultrasound method, foreign matter of the spent resin was removed and was found that the level of radioactivity is below of the MDA. In the microbubbles method, we found that the concentration of the radioactivity decreased after the experiment, so it can be used to the decontamination process of the spent resin. In supercritical carbon dioxide method, we found that it also had a high decontamination efficiency. According to the results of these experiments, almost all decontamination method had a high efficiency, but considering the amounts of the secondary waste productions and work environment of the nuclear power plant, we judged the ultrasound and supercritical carbon dioxide method are suitable for application to the plant and we established the plant applicable decontamination process system on the basis of these two methods.

Case Study of Deep Geological Disposal Facility Design for High-level Radioactive Waste (스웨덴 고준위방사성폐기물 심층처분시설의 설계 사례 분석)

  • Juhyi Yim;Jae Hoon Jung;Seokwon Jeon;Ki-Il Song;Young Jin Shin
    • Tunnel and Underground Space
    • /
    • v.33 no.5
    • /
    • pp.312-338
    • /
    • 2023
  • The underground disposal facility for spent nuclear fuel demands a specialized design, distinct from conventional practices, to ensure long-term thermal, mechanical, and hydraulic integrity, preventing the release of radioactive isotopes from high-temperature spent nuclear fuel. SKB has established design criteria for such facilities and executed practical design implementations for Forsmark. Moreover, in response to subsurface uncertainty, SKB has proposed an empirical approach involving monitoring and adaptive design modifications, alongside stepwise development. SKB has further introduced a unique support system, categorizing ground types and behaviors and aligning them with corresponding support types to confirm safety through comparative analyses against existing systems. POSIVA has pursued a comparable approach, developing a support system for Onkalo while accounting for distinct geological characteristics compared to Forsmark. This demonstrates the potential for domestic implementation of spent nuclear fuel disposal facility designs and the establishment of a support system adapted to national attributes.

A Study on the Development of Sustainable Durability Design System for Reinforced Concrete Structure under Chloride Attack Environments (염해 환경하의 철근콘크리트 구조물의 친환경 내구설계 시스템 개발에 관한 연구)

  • Kim, Rak-Hyun;Roh, Seung-Jun;Tae, Sung-Ho
    • KIEAE Journal
    • /
    • v.11 no.4
    • /
    • pp.87-94
    • /
    • 2011
  • This study was suggested to develop sustainable durability design system and proposed the plan to evaluate design conditions that meet the intended service life and $LCCO_{2}$ reduction level of reinforced concrete structure easily from the early design stage. For that the W/B and covering depth of the concrete structure were calculated through calculation of service life based on standard specification expression and the quantitative reduction rate of the vertical member of reinforced concrete structure by the calculated W/B was applied. Life cycle of building classified into construction stage, operation stage, maintenance stage, and demolition/disposal stage and the method of $CO_{2}$ evaluation of each stage was proposed. For construction stage, the major construction materials that take up over 80% $CO_{2}$ emitting during building construction were selected and the $CO_{2}$ evaluation method for 5 standard apartment houses was proposed. Also, for operation stage, $CO_{2}$ emission was calculated through calculation of heating load by energy efficiency rating certification system. For maintenance stage, $CO_{2}$ emission was calculated using concept of re-construction by life and for demolition/disposal stage was calculated with the use of construction standard estimate. As a result of the case study by such evaluation methods, 80 years of service life and 17 specifications of sustainable durability design that meet the 40% intended $LCCO_{2}$ reduction level were deduced. The Maximum $LCCO_{2}$ reduction rate was analyzed by 47.2%.

Logical Analysis for Parameters of Radioactive waste Policy using System Dynamics Technique (시스템 다이내믹스 모델링을 통한 중.저준위방사성폐기물시설 부지선정 영향 인자 분석)

  • Lee, Y.J.;Cho, S.K.
    • Journal of Energy Engineering
    • /
    • v.17 no.2
    • /
    • pp.77-87
    • /
    • 2008
  • Decision-making of the site for the medium and low-level radioactive-waste disposal facilities in 2005 can be estimated as a success. But the limits exposed during the process still remain as problems to be solved. Analyzing the causes of success and failure of the policy and their correlation was expected to provide an effective guideline on future policies. The analysis shows that the transparency of policy makers, the level of community supports and the public relations are decisive factors. System dynamics, a synthetic analyzing tool, is used as a methodology for policy analysis. The result of the system dynamics analysis shows that public confidence is to be the key role to for and against logics when transparency of stakeholder, subsidy and public information are set as adjustable parameters. Public confidence takes a role of leverage that can convert tendency of conclusion by the opinion which influenced by selected parameters.

Study on Basic Requirements of Geoscientific Area for the Deep Geological Repository of Spent Nuclear Fuel in Korea (사용후핵연료 심지층처분장부지 지질환경 기본요건 검토)

  • Bae, Dae-Seok;Koh, Yong-Kwon;Park, Ju-Wan;Park, Jin-Baek;Song, Jong-Soon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.1
    • /
    • pp.63-75
    • /
    • 2012
  • This paper gives some basic requirements and preferences of various geological environmental conditions for the final deep geological repository of spent nuclear fuel (SNF). This study also indicates how the requirements and preferences are to be considered prior to the selection of sites for a site investigation as well as the final disposal in Korea. The results of the study are based on the knowledge and experience from the IAEA and NEA/OECD as well as the advanced countries in SNF disposal project. This study discusses and suggests preliminary guideline of the disposal requirements including geological, mechanical, thermal, hydrogeological, chemical and transport properties of host rock with long term geological stabilities which influence the functions of a multi-barrier disposal system. To apply and determine whether requirements and preferences for a given parameter are satisfied at different stages during a site selection and suitability assessment of a final disposal site, the quantitative criteria in each area should be formulated with credibility through relevant research and development efforts for the deep geological environment during the site screening and selection processes as well as specific studies such as productions of safety cases and validation studies using a generic underground research laboratory (URL) in Korea.

Numerical Modelling for the Dilation Flow of Gas in a Bentonite Buffer Material: DECOVALEX-2019 Task A (벤토나이트 완충재에서의 기체 팽창 흐름 수치 모델링: DECOVALEX-2019 Task A)

  • Lee, Jaewon;Lee, Changsoo;Kim, Geon Young
    • Tunnel and Underground Space
    • /
    • v.30 no.4
    • /
    • pp.382-393
    • /
    • 2020
  • The engineered barrier system of high-level radioactive waste disposal must maintain its performance in the long term, because it must play a role in slowing the rate of leakage to the surrounding rock mass even if a radionuclide leak occurs from the canister. In particular, it is very important to clarify gas dilation flow phenomenon clearly, that occurs only in a medium containing a large amount of clay material such as a bentonite buffer, which can affect the long-term performance of the bentonite buffer. Accordingly, DECOVALEX-2019 Task A was conducted to identify the hydraulic-mechanical mechanism for the dilation flow, and to develop and verify a new numerical analysis technique for quantitative evaluation of gas migration phenomena. In this study, based on the conventional two-phase flow and mechanical behavior with effective stresses in the porous medium, the hydraulic-mechanical model was developed considering the concept of damage to simulate the formation of micro-cracks and expansion of the medium and the corresponding change in the hydraulic properties. Model verification and validation were conducted through comparison with the results of 1D and 3D gas injection tests. As a result of the numerical analysis, it was possible to model the sudden increase in pore water pressure, stress, gas inflow and outflow rate due to the dilation flow induced by gas pressure, however, the influence of the hydraulic-mechanical interaction was underestimated. Nevertheless, this study can provide a preliminary model for the dilation flow and a basis for developing an advanced model. It is believed that it can be used not only for analyzing data from laboratory and field tests, but also for long-term performance evaluation of the high-level radioactive waste disposal system.

Optical System with 4 ㎛ Resolution for Maskless Lithography Using Digital Micromirror Device

  • Lee, Dong-Hee
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.266-276
    • /
    • 2010
  • In the present study, an optical system is proposed for maskless lithography using a digital micromirror device (DMD). The system consists of an illumination optical system, a DMD, and a projection lens system. The illumination optical system, developed for 95% uniformity, is composed of fly's eye lens plates, a 405 nm narrow band pass filter (NBPF), condensing lenses, a field lens and a 250W halogen lamp. The projection lens system, composed of 8 optical elements, is developed for 4 ${\mu}m$ resolution. The proposed system plays a role of an optical engine for PCB and/or FPD maskless lithography. Furthermore, many problems arising from the presence of masks in a conventional lithography system, such as expense and time in fabricating the masks, contamination by masks, disposal of masks, and the alignment of masks, may be solved by the proposed system. The proposed system is verified by lithography experiments which produce a line pattern with the resolution of 4 ${\mu}m$ line width.

On the characteristics and seismic study of Hat Knee Bracing system, in steel structures

  • JafarRamaji, Issa;Mofid, Massood
    • Steel and Composite Structures
    • /
    • v.13 no.1
    • /
    • pp.1-13
    • /
    • 2012
  • In this study, a new structural bracing system named 'Hat Knee Bracing' (HKB) is presented. In this structural system, a special form of diagonal braces, which is connected to the knee elements instead of beam-column joints, is investigated. The diagonal elements provide lateral stiffness during moderate earthquakes. However the knee elements, which is a fuse-like component, is designed to have one plastic joint in the knee elements for dissipation of the energy caused by strong earthquake. First, a suitable shape for brace and knee elements is proposed through elastic studying of the system and several practical parameters are established. Afterward, by developing applicable and highly accurate models in Drain-2DX, the inelastic behavior of the system is carefully considered. In addition, with inelastic study of the new bracing system and comparison with the prevalent Knee Bracing Frame system (KBF model) in nonlinear static and dynamic analysis, the seismic behavior of the new bracing system is reasonably evaluated.

A Study on the Collection and Transportation Processes of Used Oil Containers by Integrated Management System (통합관리 시스템을 이용한 윤활유 페빈용기 회수 ㆍ 처리에 관한 연구)

  • 김청균
    • Tribology and Lubricants
    • /
    • v.19 no.2
    • /
    • pp.94-101
    • /
    • 2003
  • Used motor oil contains pollutants, including organic chemicals and meta]s. When disposed of improperly - in the trash, on the ground or in a sewer system - the pollutants may reach rivers, lakes or the ground water. Thus, all the waste oil products such as waste motor oil, waste oil container, and waste oil filter should be collected and transported for recycling or disposal by waste oil regulations. Because waste oil container is a valuable resource, waste oil containers can be reused, cleaned, buried, and burned for recycling processes. This paper presents the integrated management system that may increase the efficiency and productivity for collecting and reprocessing waste oil containers such as steel can and plastic container. The integrated management system consists of collection and transportation process management system and confirmation and certification process management system for waste oil containers.

Recovery Increase by Recycling Backwash Residuals in Microfiltration System

  • Yu, Myong-Jin;Pak, Hong-Kyoung;Sung, Il-Wha
    • Journal of environmental and Sanitary engineering
    • /
    • v.23 no.4
    • /
    • pp.13-21
    • /
    • 2008
  • With the rise in membrane applications, residuals management has become a growing challenge for membrane system. The primary residuals of MF/UF (microfiltration/ultrafiltration) system results from the wastes generated during backwashing. Many regulatory agencies, utilities, and water process engineers are unfamiliar with the characteristics and methods for treatment and disposal of membrane residuals. Therefore, this study was performed to investigate the backwash residuals water quality from the pressurized system with and without pre-coagulation, and to suggest approaches for the backwash residuals treatment. Pressurized MF system was installed at Guui water intake pumping station and operated with raw water taken from the Han River. We compared performances with and without the recycling backwash residuals at flux conditions, 50 LMH and 90 LMH with and without pre-treatment (coagulation). Based on the results, recycling of backwash residuals in pressurized system with pre-coagulation showed applicability of backwash residuals managements. Moreover, the recovery rate also increased up to over 99%.