• Title/Summary/Keyword: Disposal system

Search Result 796, Processing Time 0.031 seconds

Development of Advanced Management System for Social Infrastructures - Advanced Management System of Waste Disposal Facilities as an Example -

  • Muraoka, Motoshi;Kirikawa, Takuya;Nagata, Katsuya
    • International Journal of Safety
    • /
    • v.9 no.2
    • /
    • pp.11-15
    • /
    • 2010
  • Infrastructures in Japan constructed mostly in high economic growth period become elder & elder, and the troubles & accidents caused by the aging increase. Though investment for the renewal is necessary, the shortage of public fund delays the action. Besides, we expect the decrease of the population that means the decrease of the engineers who take care of social infrastructures. Thus, it is necessary for us to develop Advanced Management system of social Infrastructures (AMI) to realize the efficient and economical operation. Our concept of AMI consists of using ICT, PI (Public Involvement) and establishment of O&M diagnosis system. We expect AMI will support to realize the appropriate repairing, preventive maintenance based on the actual performance, accidents & dangerous experience and education & training of the workers. In this paper, development of AMI for the waste disposal facility as a first example of infrastructures will be shown.

Simulation of Unsaturated Fluid Flow on the 2nd Phase Facility at the Wolsong LILW Disposal Center (경주 중저준위방폐장 2단계 처분시설의 불포화 환경하에서 침투수 유동 해석)

  • Ha, Jaechul;Lee, Jeonghwan;Yoon, Jeonghyoun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.3
    • /
    • pp.219-230
    • /
    • 2017
  • This study was conducted to predict and evaluate the uncertainty of safety after closure of the second phase surface disposal facility of the Gyeongju intermediate and low level repository in Korea. In this study, four scenarios are developed considering both intact and degraded states of multi-layered covers and disposal containers; also, the fluid flow by a rainfall into the disposal facility is simulated. The rainfall conditions are implemented based on the monthly average data of the past 30 years (1985~2014); the simulation period is 300 years, the management period regulated by institutional provisions. As a result of the evaluation of the basic scenario, in which the integrity of both of the containers and the covers is maintained, it was confirmed that penetration of rainfall does not completely saturate the inside of the disposal facility. It is revealed that the multiple cover layers and concrete containers effectively play the role of barrier against the permeation of rainfall.

Structural Analysis of the Canister for PWR Spent Fuels under the Korean Reference Disposal Conditions (한국형 기준 처분 환경에서의 PWR 사용후핵연료 처분용기의 구조적 안전성 해석)

  • Choi Heui-Joo;Lee Yang;Choi Jong-Won;Kwon Young-Joo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.3
    • /
    • pp.301-309
    • /
    • 2006
  • KDC-1 canister for PWR spent fuels which will be used for the Korean Reference Disposal System was developed. The structural analysis of the canister was carried out as a part of the safety analysis. Two conditions, disposal condition and handling condition, were considered for the structural analysis. Three kinds of load cases, normal, abnormal and rock movement, were considered for the disposal condition. The results of the calculation showed that the safety factors from the structural analysis were greater than the design requirements. Two accident scenarios, gripper failure accident and canister drop accident, were analyzed for the handling condition. According to the gripper failure scenario analysis, the handling machine with grippers could be used even in the cases that one or two grippers failed. The maximum von Mises stress from the canister drop accident scenario was 0.762 MPa, which was negligible compared with the yield stress of nodular cast iron. The proposed KDC-1 canister for PWR spent fuels proves to be safe under the repository condition that is based upon the Korean reference disposal system according to the structural analysis for disposal condition and handling condition.

  • PDF

An Analysis of Disposal Site about an Airport useing ICAO and GIS (ICAO 기준과 지리정보를 이용한 공항입지선정에 관한 연구)

  • Choi Hyun
    • Spatial Information Research
    • /
    • v.13 no.3 s.34
    • /
    • pp.323-333
    • /
    • 2005
  • This paper shows disposal site about an airport using ICAO(International Civil Aviation Organization)and GIS(Geographic Information System). In Korea, mountains occupy above $70\%$ of the whole country centering around Baek-Du mountain range and a physical distribution system doesn't go on smoothly between east and west region. At present, disposal site about an airport follows the standard of ICAO and FAA(Federal Aviation Administration). So, it's desperately necessary to make the new standard suitable for the condition of Korea. This study analyzes major customers in the aerospace and transportation sector by considering the present condition of location of geography, atmospheric phenomena, population and transportation about Ul-Jin airport on the standard of ICAO and FAA. As the results, Gi-Sung site proposed for the airport using the existing a runway in air force has a locality road connecting a fishing and agrarian villages and is shown better than the others.

  • PDF

Radiological Safety Assessment of a HLW Repository in Korea using MASCOT-K (MASCOT-K를 이용한 가상 방사성폐기물 처분장에서의 종합성능 평가)

  • 황용수;이연명;강철형
    • Tunnel and Underground Space
    • /
    • v.10 no.4
    • /
    • pp.553-558
    • /
    • 2000
  • Since 1977, KAERI has conducted the fundamental R&D on the permanent disposal of potential HLW repository in Korea. The first ten year project is divided into three short-term phase studies. The first phase study which shall be finished in March of 2000, has the prime target to develop the disposal concept of HLW. Throughout this study the preliminary and generic disposal repository system has been introduced. The potential repository is proposed to be emplaced into crystalline rocks which is the most common rock types in Korea. The proposed depth of the repository is between 300 to 700 meter. The numerical code, MASCOT-K was developed to asserts the long term safety of the proposed repository concept. Based on this conceptual design preliminary safely assessment was performed. Results show that for the given disposal system the potential radioactive release it well below the regulatory limit.

  • PDF

International Comparisons of Management Systems for Medical Waste and Suggestions for Future Direction of Medical Waste Management System in Korea (세계 각국의 의료폐기물 관리 제도 비교: 한국 의료폐기물 관리체계에 대한 시사점)

  • Oh, Se-Eun;Ji, Kyung-hee;Park, Seokhwan;Kim, Pangyi;Lee, Kyoung-Mu
    • Journal of Environmental Health Sciences
    • /
    • v.43 no.6
    • /
    • pp.532-544
    • /
    • 2017
  • Objectives: Because the amount of medical waste (i.e., health-care waste) generated in Korea is rapidly increasing and social concern against its safety is widespread, a number of issues related with medical wastes are being discussed. The purpose of this study is to compare diverse medical waste management systems worldwide and propose future directions of a medical waste management system in Korea. Methods: Literature review was conducted mainly on the WHO, and developed countries such as the European Union (Germany, Belgium and UK), Japan and the United States. For these countries, the data with respect to their systems for medical waste management ranging from the definition of medical waste to the whole processes of collection, transportation and disposal were summarized and compared. Results: The terminology and classification of medical wastes were not consistent for WHO recommendation, EU, Japan, US and Korea. Comparison of the collection, storage, transportation and disposal of medical waste showed that Korea had rather stronger regulations for medical waste management compared to developed countries including Belgium (Flanders region), Germany, Japan and the US. Considering that developed countries adopt rather flexible disposal system especially for general medical wastes which pose lower possibility of infection, Korean government could consider diversifying disposal methods other than incineration. It may also be very important to try to reduce the amount of medical wastes and enough capacity for off-site incineration are secured. Conclusion: Our study of international comparisons suggests that it is necessary to continue to identify advantages and disadvantages of the current medical waste management systems and establish more effective one in Korea.

Thermal Conductivity Evaluation of Compacted Bentonite Buffers Considering Temperature Variations (압축 벤토나이트 완충재의 온도에 따른 열전도도 평가)

  • Yoon, Seok;Park, Seunghun;Kim, Min-Seop;Kim, Geon-Young;Lee, Seung-Rae
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.1
    • /
    • pp.43-49
    • /
    • 2020
  • An engineered barrier system (EBS) for the geological disposal of high-level radioactive waste (HLW) consists of a disposal canister packed with spent fuel, buffer material, backfill material, and gap-filling material. The buffer material fills the space between the canister and the near-field rock, thus serving to restrain the release of radionuclides and protect the canister from groundwater penetration. Furthermore, as significant amounts of heat energy are released from the canister to the surrounding rock, the thermal conductivity of the buffer plays an important role in maintaining the safety of the entire disposal system. Therefore, given the high levels of heat released from disposal canisters, this study measured the thermal conductivities of compacted bentonite buffers from Gyeongju under temperature variations ranging 25 to 80~90℃. There was a 5~20% increase in thermal conductivity as the temperature increased, and the temperature effect increased as the degree of saturation increased.

Performance Assessment of Low- and Intermediate-Level Radioactive Waste Disposal Facility in Korea by Using Complementary Indicator: Case Study with Radionuclide Flux (보조지표를 활용한 중·저준위 처분시설 성능평가: 방사성 핵종 플럭스 사례연구)

  • Jung, Kang-Il;Jeong, Mi-Seon;Park, Jin Beak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.1
    • /
    • pp.73-86
    • /
    • 2015
  • The use of complimentary indicators, other than radiation dose and risk, to assess the safety of radioactive waste disposal has been discussed in a number of publications for providing the reasonable assurance of disposal safety and convincing the public audience. In this study, the radionuclide flux was selected as performance indicator to appraise the performance of engineered barriers and natural barrier in the Wolsong low- and intermediate-level waste disposal facility. Radionuclide flux showing the retention capability by each compartment of the disposal system is independent of assumptions in biosphere model and exposure pathways. The scenario considered as the normal scenario of disposal facility has been divided into intact or degraded silo concrete conditions. In the intact silo concrete, the radionuclide flux has been assessed with respect to the radionuclide retardation performance of each engineered barrier. In the degraded silo concrete, the radionuclide flux has been explored based on the performance degradation of engineered barriers and the relative significance of natural barrier quantitatively. The results can be used to optimally design the near-surface disposal facility being planned as the second project phase. In the future, additional complimentary indicators will be employed for strengthening the safety case for improving the public acceptance of low- and intermediate-level waste disposal facility.

Thermal Properties of Buffer Material for a High-Level Waste Repository Considering Temperature Variation (고준위폐기물 처분시설 완충재의 온도변화에 따른 열물성)

  • Yoon, Seok;Kim, Geon-Young;Park, Tae-Jin;Lee, Jae-Kwang
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.10
    • /
    • pp.25-31
    • /
    • 2017
  • The buffer is one of the major components of an engineered barrier system (EBS) for the disposal of high-level radioactive waste (HLW). As the buffer is located between a disposal canister and host rock, it is indispensable to assure the disposal safety of high-level radioactive waste. It can restrain the release of radionuclide and protect the canister from the inflow of groundwater. Since high quantity of heat from a disposal canister is released to the surrounding buffer, thermal properties of the buffer are very important parameters for the analysis of the entire disposal safety. Especially, temperature criteria of the compacted bentonite buffer can affect the design of HLW repository facility. Therefore, this paper investigated thermal properties for the Kyungju compacted bentonite buffer which is the only bentonite produced in South Korea. Hot wire method and dual probe method were used to measure thermal conductivity and specific heat capacity of the compacted bentonite buffer according to the temperature variation. Thermal conductivity and specific heat capacity were decreased dramatically when temperature variation was between $22^{\circ}C{\sim}110^{\circ}C$ as degree of saturation decreased according to the temperature variation. However, there was little variation under the high temperature condition at $110^{\circ}C{\sim}150^{\circ}C$.

Safety Assessment of Near Surface Disposal Facility for Low- and Intermediate-Level Radioactive Waste (LILW) through Multiphase-Fluid Simulations Based on Various Scenarios (다양한 시나리오 기반 유체거동 수치모사를 통한 중·저준위 방사성 폐기물 표층처분시설 안전성 평가)

  • Jeong, Jina;Kown, Mijin;Park, Eungyu
    • Economic and Environmental Geology
    • /
    • v.51 no.2
    • /
    • pp.131-147
    • /
    • 2018
  • In the present study, the safety of the near surface disposal facility for low- and intermediate-level radioactive waste (LILW) is examined based on the fluid-flow simulation model. The effects of the structural design and hydrological properties of the disposal system are quantitatively evaluated by estimating the flux of infiltrated water at the boundary of the structure. Additionally, the safety margins of the disposal system, especially for the cover layer and vault, are determined by applying the various scenarios with consideration of possible facility designs and precipitation conditions. The overall results suggest that the disposal system used in this study is sufficiently suitable for the safe operation of the facility. In addition, it is confirmed that the soundness of both the cover layer and the vault have great impact on the safety of the facility. Especially, as shown in the vault degradation scenario, capability of the concrete barrier of the vault make more positive contribution on the safe operation of the facility compared to that of the cover layer.