• Title/Summary/Keyword: Discrete nonlinear systems

Search Result 217, Processing Time 0.031 seconds

MULTIPLE VALUED ITERATIVE DYNAMICS MODELS OF NONLINEAR DISCRETE-TIME CONTROL DYNAMICAL SYSTEMS WITH DISTURBANCE

  • Kahng, Byungik
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.1
    • /
    • pp.17-39
    • /
    • 2013
  • The study of nonlinear discrete-time control dynamical systems with disturbance is an important topic in control theory. In this paper, we concentrate our efforts to multiple valued iterative dynamical systems, which model the nonlinear discrete-time control dynamical systems with disturbance. After establishing the validity of such modeling, we study the invariant set theory of the multiple valued iterative dynamical systems, including the controllability/reachablity problems of the maximal invariant sets.

GENERALIZED DISCRETE HALANAY INEQUALITIES AND THE ASYMPTOTIC BEHAVIOR OF NONLINEAR DISCRETE SYSTEMS

  • Xu, Liguang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.5
    • /
    • pp.1555-1565
    • /
    • 2013
  • In this paper, some new generalized discrete Halanay inequalities are established. On the basis of these new established inequalities, we obtain the attracting set and the global asymptotic stability of the nonlinear discrete systems. Our results established here extend the main results in [R. P. Agarwal, Y. H. Kim, and S. K. Sen, New discrete Halanay inequalities: stability of difference equations, Commun. Appl. Anal. 12 (2008), no. 1, 83-90] and [S. Udpin and P. Niamsup, New discrete type inequalities and global stability of nonlinear difference equations, Appl. Math. Lett. 22 (2009), no. 6, 856-859].

A design of discrete time nonlinear control system with disturbances using model following method

  • Zhang, Yuan-Sheng;Okubo, Shigenori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.239-242
    • /
    • 1996
  • A model following control system(MFCS) can give general output signals following desired ones. In previous studies, a method of nonlinear MFCS was proposed by S.Okubo[1]. In this paper, the method of nonlinear MFCS will be extended to discrete time nonlinear systems. It is easy to extend the method to discrete time systems. But in the case .gamma.=1 discrete time systems, the proof becomes difficult, because the transfer function from f(v(k)) to v(k) can't be a positive real function. In this case, to ensure that internal states are stable, a new criterion is proposed.

  • PDF

Observers for nonautonomous discrete-time nonlinear systems

  • Nam, Kwanghee;Lee, Wonchang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1828-1832
    • /
    • 1991
  • We study the observer design problem for nonautonomous discrete-time nonlinear systems. We investigate the structure of nonautonomous discrete-time systems which are state equivalent to the nonlinear observer form and characterize their class. Necessary and sufficient conditions for the existence of an input independent (local) diffeomorphism axe derived which transforms multi-input, multi-output nonlinear systems into the nonlinear observer form.

  • PDF

Identification and Control for Nonlinear Discrete Time Systems Using an Interconnected Neural Network

  • Yamamoto, Yoshihiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.994-998
    • /
    • 2005
  • A new control method, called a simple model matching, has been recently developed by the author. This is very simple and be applied for linear and nonlinear discrete time systems with/without time lag. Based on this formulation, identification is examined in this paper using an interconnected neural network with the EBP-EWLS learning algorithm. With this result, a control method is also presented for a nonlinear discrete time system.

  • PDF

Dynamic Feedback Linearization of Nonlinear Discrete - Time Systems with 2 Inputs

  • Cho, Hyung-Joon;Ryu, Dong-Young;Park, Se-Yeon;Lee, Hong-Gi;Kim, Yong-Min
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.172.3-172
    • /
    • 2001
  • In this paper, we find the necessary and sufficient conditions of linearization of nonlinear discrete-time systems with 2 inputs using the restricted class of dynamic feedback. That is, this paper is the discrete version of [2]. The results we obtain for discrete-time nonlinear systems are, however, quite different from that of continuous-time case.

  • PDF

Robust Nonlinear H$\infty$ FIR Filtering for Time-Varying Systems

  • Ryu, Hee-Seob;Son, Won-Kee;Kwon, Oh-Kyu
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.3
    • /
    • pp.175-181
    • /
    • 2000
  • This paper investigates the robust nonlinear H$_{\infty}$ filter with FIR(Finite Impulse Response) structure for nonlinear discrete time-varying uncertain systems represented by the state-space model having parameter uncertainty. Firstly, when there is no parameter uncertainty in the system, the discrete-time nominal nonlinear H$_{\infty}$ FIR filter is derived by using the equivalence relationship between the FIR filter and the recursive filter, which corresponds to the standard nonlinear H$_{\infty}$ filter. Secondly, when the system has the parameter uncertainty, the robust nonlinear H$_{\infty}$ FIR filter is proposed for the discrete-time nonlinear uncertain systems.

  • PDF

Nonlinear Discrete-Time Reconfigurable Flight Control Systems Using Neural Networks (신경회로망을 이용한 이산 비선형 재형상 비행제어시스템)

  • 신동호;김유단
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.2
    • /
    • pp.112-124
    • /
    • 2004
  • A neural network based adaptive reconfigurable flight controller is presented for a class of discrete-time nonlinear flight systems in the presence of variations of aerodynamic coefficients and control effectiveness decrease caused by control surface damage. The proposed adaptive nonlinear controller is developed making use of the backstepping technique for the angle of attack, sideslip angle, and bank angle command following without two time separation assumption. Feedforward multilayer neural networks are implemented to guarantee reconfigurability for control surface damage as well as robustness to the aerodynamic uncertainties. The main feature of the proposed controller is that the adaptive controller is developed under the assumption that all of the nonlinear functions of the discrete-time flight system are not known accurately, whereas most previous works on flight system applications even in continuous time assume that only the nonlinear functions of fast dynamics are unknown. Neural networks learn through the recursive weight update rules that are derived from the discrete-time version of Lyapunov control theory. The boundness of the error states and neural networks weight estimation errors is also investigated by the discrete-time Lyapunov derivatives analysis. To show the effectiveness of the proposed control law, the approach is i]lustrated by applying to the nonlinear dynamic model of the high performance aircraft.

Variable Structure Control for Discrete-time Nonlinear Systems

  • Han, So-Hee;Cho, Byung-Sun;Park, Kang-Bak
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1414-1417
    • /
    • 2003
  • In this paper, sliding mode controller for discrete-time nonlinear systems with uncertainties and disturbances are proposed. The concept of time-delay control (TDC) which consists of estimating the uncertain dynamics of the system through past observations of the system response is used. The proposed controller guarantees that the closed-loop system states are globally uniformly ultimately bounded (GUUB). It is also shown that the closed-loop system states are globally uniformly asymptotically stable (GUAS) if uncertainties are constant.

  • PDF

Control of Discrete Time Nonlinear Systems with Input Delay (입력지연을 갖는 이산 시간 비선형 시스템의 제어)

  • Lee, Sung-Ryul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.6
    • /
    • pp.509-512
    • /
    • 2012
  • This paper presents the state feedback control design for discrete time nonlinear systems where there exists a time delay in input. It is shown that under some boundedness condition, the time delay nonlinear systems can be transformed into the time delay linear systems with time varying parameters. Sufficient conditions for existence of stabilizing state feedback controller are characterized by linear matrix inequalities. Finally, an illustrative example is given in order to show the effectiveness of our design method.