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GENERALIZED DISCRETE HALANAY INEQUALITIES

AND THE ASYMPTOTIC BEHAVIOR OF

NONLINEAR DISCRETE SYSTEMS

Liguang Xu

Abstract. In this paper, some new generalized discrete Halanay inequal-
ities are established. On the basis of these new established inequalities,
we obtain the attracting set and the global asymptotic stability of the
nonlinear discrete systems. Our results established here extend the main
results in [R. P. Agarwal, Y. H. Kim, and S. K. Sen, New discrete Halanay

inequalities: stability of difference equations, Commun. Appl. Anal. 12

(2008), no. 1, 83–90] and [S. Udpin and P. Niamsup, New discrete type

inequalities and global stability of nonlinear difference equations, Appl.
Math. Lett. 22 (2009), no. 6, 856–859].

1. Introduction

In 1966, Halanay proved the following famous result.

Halanay Inequality (Halanay [9, pp. 378–380]). If

f ′(t) ≤ −αf(t) + β sup
[t−τ,t]

f(s) for t ≥ t0

and α > β > 0, then there exist γ > 0 and K > 0 such that

f(t) ≤ Ke−γ(t−t0) for t ≥ t0.

Since then, Halanay inequality has widely been applied to the stability anal-
ysis of delay differential systems (see e.g. [3, 5, 7, 8, 9, 11, 12]). At the same
time, various generalized Halanay inequalities have been presented and used by
many authors (see e.g. [6, 10, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25]). In
particular, in [1, 16], the authors consider the following discrete Halanay-type
inequalities in order to study some discretized versions of functional differential
equations.
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Theorem A (Udpin and Niamsup, [16, Theorem 2.1]). Let qi ∈ R
+
0 , hi ∈ Z

+,

i = 1, . . . , r, where 0 = h0 < h1 < · · · < hr and
∑r

i=0 qi < p ≤ 1, and let

{xj}j∈Z−hr be a sequence of real numbers satisfying the inequality

∆xn ≤ −pxn +

r
∑

i=0

qixn−hi
, n ∈ Z

0.(1.1)

Then there exists λ0 ∈ (0, 1) such that

xn ≤ max{0, x0, x−1, . . . , x−hr
}λn0 , n ∈ Z

0.(1.2)

Moreover, λ0 may be chosen as the smallest root of the polynomial

P (λ) = λhr+1 − (1 − p+ q0)λ
hr − q1λ

hr−h1 − · · · − qr−1λ
hr−hr−1 − qr(1.3)

which lies in the interval (0, 1).

Theorem B (Udpin and Niamsup, [16, Theorem 2.2]). Let p, αi, βi ∈ R
+,

hi ∈ Z
+, i = 1, . . . , r, where 0 = h0 < h1 < · · · < hr,

∑r

i=0 αi = 1 and

Πri=0βi < p ≤ 1. Let {xn}n∈Z−hr be a sequence of real numbers such that xαi

n−hi

are defined for all i = 1, . . . , r; n ∈ Z
0 which satisfies the inequality

∆xn ≤ −pxn + (Πri=0βi)(x
αi

n−hi
), n ∈ Z

0.(1.4)

Then there exists λ0 ∈ (0, 1) such that

xn ≤ max{0, x0, x−1, . . . , x−hr
}λn0 , n ∈ Z

0.(1.5)

Moreover, λ0 can be chosen as the smallest root of the function

F (λ) = λ− (Πri=0βi)(λ
−

∑r
i=0

hiαi) + (p− 1)(1.6)

which lies in the interval (0, 1).

Theorem C (Agarwal, Kim, and Sen, [1, Theorem 2.2]). Let ai, qi ∈ R
+
0 , hi ∈

Z
0, i = 0, . . . , r − 1; ar, qr ∈ R

+, hr ∈ Z
+, where 0 = h0 < h1 < · · · < hr. Let

αi, βi ∈ R
+,

∑r

i=0 αi = 1 and [(1−δ)Πri=0βi+δ
∑r

i=0 qi] <
∑r

i=0 ai ≤ 1, where
0 ≤ δ ≤ 1 is a constant. Also, let {xn}n∈Z−hr be a sequence of nonnegative real

numbers satisfying the inequality

∆xn ≤
r

∑

i=0

(δqixn−hi
− aixn) + (1− δ)(Πri=0βi)(x

αi

n−hi
), n ∈ Z

0.(1.7)

Then there exists a constant λ0 ∈ (0, 1) such that

xn ≤ max{0, x0, x−h1
, . . . , x−hr

}λn0 , n ∈ Z
0.(1.8)

Moreover, λ0 can be chosen as the root in the interval (0, 1) of the equation

λ+ (

r
∑

i=0

ai − 1)− (1 − δ)(Πri=0βi)(λ
−

∑r
i=0

αihi)− δ

r
∑

i=0

qiλ
−hi = 0.(1.9)
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Obviously, these discrete Halanay-type inequalities are important tools for
investigating the stability of discrete systems. However, the equilibrium point
sometimes does not exist in many real systems, especially in nonlinear dynam-
ical systems. Therefore, an interesting subject is to discuss the attracting set
of nonlinear discrete systems. However, the foregoing discrete Halanay-type
inequalities are ineffective for studying the attracting sets of nonlinear discrete
systems. With motivation from the above discussions, our main aim in the
present paper is to improve the foregoing inequalities such that it is effective
for studying the attracting sets of nonlinear discrete systems. We also illustrate
the application of these inequalities.

2. Generalized discrete Halanay inequalities

Throughout this paper, unless otherwise specified, we use the following no-
tations. Let R denote the set of all real numbers, R+ the set of positive real
numbers, R+

0 the set of nonnegative real numbers, Z the set of integers, Z+ the
set of positive integers, and Z

−r = {z ∈ Z : z ≥ −r}. For a sequence of real
number {xn}, the difference operator ∆ on xn is defined as ∆xn = xn+1 − xn.

In this section, we introduce some new generalized discrete Halanay inequal-
ities which will be used to study the attracting set and the global asymptotic
stability of the nonlinear discrete systems. We need the following lemma in the
discussions of our main results.

Lemma 2.1 (Arithmetic-mean–geometric-mean inequality [4]). For xi ≥ 0,
αi > 0 and

∑n

i=1 αi = 1,
n
∏

i=1

xαi

i ≤
n
∑

i=1

αixi,

the sign of equality holds if and only if xi = xj for all i, j ∈ N .

Theorem 2.2. Let ai, qi, Υ ∈ R
+
0 , hi ∈ Z

0, i = 0, . . . , r − 1; ar, qr ∈ R
+,

hr ∈ Z
+, where 0 = h0 < h1 < · · · < hr. Let αi, βi ∈ R

+,
∑r

i=0 αi = 1 and

[(1− δ)Πri=0βi+ δ
∑r

i=0 qi] <
∑r

i=0 ai ≤ 1, where 0 ≤ δ ≤ 1 is a constant. Also

let {xn}n∈Z−hr be a sequence of real numbers satisfying the inequality

∆xn ≤
r

∑

i=0

(δqixn−hi
− aixn) + (1− δ)(Πri=0βi)(

r
∑

i=0

αixn−hi
) + Υ, n ∈ Z

0.

(2.1)

Then there exists λ0 ∈ (0, 1) such that

xn ≤ max{0, x0, x−h1
, . . . , x−hr

}λn0 + Λ, n ∈ Z
0,(2.2)

where Λ = (
∑r

i=0 ai − δ
∑r

i=0 qi − (1 − δ)Πri=0βi)
−1Υ. Moreover, λ0 can be

chosen as the root in the interval (0, 1) of the equation

λ+ (

r
∑

i=0

ai − 1)− (1− δ)(Πri=0βi)(

r
∑

i=0

αiλ
−hi)− δ

r
∑

i=0

qiλ
−hi = 0.(2.3)
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Proof. Let yn be a solution of the difference equation

∆yn =

r
∑

i=0

(δqiyn−hi
− aiyn) + (1− δ)(Πri=0βi)(

r
∑

i=0

αiyn−hi
) + Υ, n ∈ Z

0.

(2.4)

Since (1−
∑r

i=0 ai) ≥ 0, qi ∈ R
+
0 , βi ∈ R

+, it is easy to prove that if xn satisfies
(2.1) and xn ≤ yn for n = −hr, . . . , 0, then xn ≤ yn for all n ∈ Z

0. For a given
K > 0 and λ ∈ (0, 1), the sequence {yn} defined by yn = Kλn+Λ is a solution
of (2.4) if and only if λ is a root of the polynomial (2.3). In fact,

yn = Kλn + Λ is a solution of (2.4)

⇐⇒ Kλn+1 −Kλn =

r
∑

i=0

[δqi(Kλ
n−hi + Λ)− ai(Kλ

n + Λ)]

+ (1− δ)(Πri=0βi)(

r
∑

i=0

αi(Kλ
n−hi + Λ)) + Υ

⇐⇒ Kλn+1 −Kλn(

r
∑

i=0

ai − 1)− (1− δ)(Πri=0βi)(

r
∑

i=0

αiKλ
n−hi)

−
r

∑

i=0

δqi(Kλ
n−hi) + (

r
∑

i=0

ai − δ

r
∑

i=0

qi − (1− δ)Πri=0βi)Λ −Υ = 0

⇐⇒ Kλn+1 −Kλn(
r

∑

i=0

ai − 1)−Kλn(1− δ)(Πri=0βi)(
r

∑

i=0

αiλ
−hi)

−Kλn
r

∑

i=0

δqi(λ
−hi) = 0

⇐⇒ λ+ (
r

∑

i=0

ai − 1)− (1− δ)(Πri=0βi)(
r

∑

i=0

αiλ
−hi)− δ

r
∑

i=0

qiλ
−hi = 0

⇐⇒ λ is a root of the polynomial (2.3).

Define a function by F by

F (λ) = λ+ (

r
∑

i=0

ai − 1)− (1− δ)(Πri=0βi)(

r
∑

i=0

αiλ
−hi)− δ

r
∑

i=0

qiλ
−hi .(2.5)

Since

lim
λ→0+

F (λ) = (

r
∑

i=0

ai − 1)− (1 − δ)(Πri=0βi)(

r
∑

i=0

αi lim
λ→0+

λ−hi)

− δ

r
∑

i=0

qi lim
λ→0+

λ−hi < 0
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and F (1) =
∑r

i=0 ai−(1−δ)(Πri=0βi)−δ
∑r

i=0 qi > 0, it follows from continuity
of F that there exists a real number λ0 ∈ (0, 1) such that F (λ0) = 0. Thus
for any K ∈ R

+
0 , the sequence Kλn0 + Λ is a solution of (2.4). Let K0 =

max{0, x0, x−1, . . . , x−hr
}. Then, {yn} = K0λ

n
0 + Λ is a solution of (2.4) and

obviously we have xn ≤ yn for n = −hr, . . . , 0. Therefore, by using the first
part of the proof, we conclude that xn ≤ yn = K0λ

n
0 + Λ, n ∈ Z

0. �

Remark 2.3. When we take δ = 1 and let p =
∑r

i=0 ai. By Theorem 2.2 we
have the following result.

Theorem 2.4. Let qi, Υ ∈ R
+
0 , hi ∈ Z

+, i = 1, . . . , r, where 0 = h0 <

h1 < · · · < hr and
∑r

i=0 qi < p ≤ 1, and let {xn}n∈Z−hr be a sequence of real

numbers satisfying the inequality

∆xn ≤ −pxn +

r
∑

i=0

qixn−hi
+Υ, n ∈ Z

0.(2.6)

Then there exists λ0 ∈ (0, 1) such that

xn ≤ max{0, x0, x−h1
, . . . , x−hr

}λn0 + Λ, n ∈ Z
0,(2.7)

where Λ = (p−
∑r

i=0 qi)
−1Υ. Moreover, λ0 may be chosen as the smallest root

of the polynomial

P (λ) = λhr+1 − (1 − p+ q0)λ
hr − q1λ

hr−h1 − · · · − qr−1λ
hr−hr−1 − qr(2.8)

which lies in the interval (0, 1).

Remark 2.5. Suppose that Υ = 0 in Theorem 2.4. Then we get Theorem A
(Udpin and Niamsup, [16, Theorem 2.1]).

Remark 2.6. By Lemma 2.1 and Theorem 2.2, we can obtain the following
theorem.

Theorem 2.7. Let ai, qi, Υ ∈ R
+
0 , hi ∈ Z

0, i = 0, . . . , r − 1; ar, qr ∈ R
+,

hr ∈ Z
+, where 0 = h0 < h1 < · · · < hr. Let αi, βi ∈ R

+,
∑r

i=0 αi = 1 and

[(1 − δ)Πri=0βi + δ
∑r

i=0 qi] <
∑r

i=0 ai ≤ 1, where 0 ≤ δ ≤ 1 is a constant.

Also let {xn}n∈Z−hr be a sequence of nonnegative real numbers satisfying the

inequality

∆xn ≤
r

∑

i=0

(δqixn−hi
− aixn) + (1− δ)(Πri=0βi)(x

αi

n−hi
) + Υ, n ∈ Z

0.(2.9)

Then there exists λ0 ∈ (0, 1) such that

xn ≤ max{0, x0, x−h1
, . . . , x−hr

}λn0 + Λ, n ∈ Z
0,(2.10)

where Λ = (
∑r

i=0 ai − δ
∑r

i=0 qi − (1 − δ)Πri=0βi)
−1Υ. Moreover, λ0 can be

chosen as the root in the interval (0, 1) of the equation

λ+ (

r
∑

i=0

ai − 1)− (1 − δ)(Πri=0βi)(

r
∑

i=0

αiλ
−hi)− δ

r
∑

i=0

qiλ
−hi = 0.(2.11)
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Proof. By (2.9) and Lemma 2.1, we get (2.1). Then, all the conditions of
Theorem 2.2 are satisfied. By Theorem 2.2, we can obtain Theorem 2.7. �

Remark 2.8. Suppose that Υ = 0 in Theorem 2.7. Then we get the main result
of Theorem C (Agarwal, Kim and Sen, [1]).

Remark 2.9. When we take δ = 0. By Theorem 2.7 we have the following
result.

Theorem 2.10. Let ai, Υ ∈ R
+
0 , hi ∈ Z

0, i = 0, . . . , r− 1; ar ∈ R
+, hr ∈ Z

+,

where 0 = h0 < h1 < · · · < hr. Let αi, βi ∈ R
+,

∑r

i=0 αi = 1 and Πri=0βi <
∑r

i=0 ai ≤ 1. Also let {xn}n∈Z−hr be a sequence of nonnegative real numbers

satisfying the inequality

∆xn ≤ −
r

∑

i=0

aixn + (Πri=0βi)(x
αi

n−hi
) + Υ, n ∈ Z

0.(2.12)

Then there exists λ0 ∈ (0, 1) such that

xn ≤ max{0, x0, x−h−1, . . . , x−hr
}λn0 + Λ, n ∈ Z

0,(2.13)

where Λ = (
∑r

i=0 ai −Πri=0βi)
−1Υ. Moreover, λ0 can be chosen as the root in

the interval (0, 1) of the equation

λ+ (

r
∑

i=0

ai − 1)− (Πri=0βi)(

r
∑

i=0

αiλ
−hi) = 0.(2.14)

Remark 2.11. Suppose that Υ = 0 in Theorem 2.10, then we get the main
result of Theorem B (Udpin and Niamsup, [16, Theorem 2.2]).

3. Asymptotic behavior of discrete systems

The inequalities obtained in Section 2 can be widely applied to research
the asymptotic behavior of delay discrete dynamic systems. To illustrate the
validity, consider the following discrete dynamic systems.

∆xn = −pxn + f(n, xn, xn−h1
, . . . , xn−hr

),(3.1)

where n, hi ∈ Z
+, i = 1, . . . , r ∈ Z

+, p > 0. For any initial string {x−r, x−r+1,
. . . , x0}, (3.1) has a unique solution which can be explicitly calculated [1, 16].
However, it is difficult to obtain the attracting set and the global asymptotic
stability using that form of solution. The following results give the attracting
set and the global asymptotic stability of (3.1) by using the inequalities derived
in Section 2.

Definition 3.1. The set S ⊂ R is called a global attracting set of (3.1), if for
any initial string {x−r, x−r+1, . . . , x0}, the solution {xn} satisfies

dist(xn, S) → 0 as n→ ∞,

where dist(φ, S) = infψ∈S ρ(φ, ψ) for φ ∈ R, ρ(·, ·) is any distance in R.
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Theorem 3.2. Assume that there exist qi, Υ ∈ R
+
0 , hi ∈ Z

+, qr ∈ R
+, where

∑r
i=0 qi < p ≤ 1 such that

|f(n, xn, xn−h1
, . . . , xn−hr

)| ≤
r

∑

i=0

qi|xn−hi
|+Υ(3.2)

for all (n, xn, xn−h1
, . . . , xn−hr

) ∈ Z
0 × R

r+1. Then, there exists λ0 ∈ (0, 1)
such that every solution {xn} of (3.1) satisfies

|xn| ≤ ( max
−hr≤i≤0

{|xi|})λ
n
0 + (p−

r
∑

i=0

qi)
−1Υ, n ∈ Z

0,(3.3)

where λ0 is chosen as in Theorem 2.4. As a consequence,

S =

{

φ ∈ R
∣

∣|φ| ≤ (p−
r

∑

i=0

qi)
−1Υ

}

is a positive attracting set of (3.1).

Proof. As in [2], it is straightforward to show that every solution {xn} of (3.1)
can be written in the form

xn = x0(1− p)n +

n−1
∑

i=0

(1− p)n−i−1f(i, xi, xi−h1
, . . . , xi−hr

), n ∈ Z
0.(3.4)

By using (3.2), we obtain

|xn| ≤ |x0|(1− p)n +

n−1
∑

i=0

(1− p)n−i−1(

r
∑

j=0

qj |xi−hj
|+Υ), n ∈ Z

0.(3.5)

For each n = −hr, . . . , 0, let vn = |xn| and for each n ∈ Z
+, we let

vn = |x0|(1− p)n +

n−1
∑

i=0

(1− p)n−i−1(

r
∑

j=0

qj |xi−hj
|+Υ).(3.6)

Then, we have |xn| ≤ vn, n ∈ Z
−hr , and hence,

∆vn = −pvn +
r

∑

i=0

qi|xn−hi
|+ Υ ≤ −pvn +

r
∑

i=0

qivn−hi
+Υ, n ∈ Z

0.(3.7)

Therefore, by Theorem 2.4, we obtain

|xn| ≤ vn ≤ ( max
−hr≤i≤0

{vi})λ
n
0 + Λ = ( max

−hr≤i≤0
{|xi|})λ

n
0 + Λ, n ∈ Z

0,(3.8)

where Λ = (p −
∑r

i=0 qi)
−1Υ, and λ0 is chosen as in Theorem 2.4. This

completes the proof of the theorem. �

Remark 3.3. Suppose that Υ = 0 in Theorem 3.2. Then we get the following
corollary.
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Corollary 3.4 (Udpin and Niamsup [16, Theorem 3.1]). Assume that there

exist qi ∈ R
+
0 , hi ∈ Z

+, qr ∈ R
+, where

∑r
i=0 qi < p ≤ 1 such that

|f(n, xn, xn−h1
, . . . , xn−hr

)| ≤
r

∑

i=0

qi|xn−hi
|(3.9)

for all (n, xn, xn−h1
, . . . , xn−hr

) ∈ Z
0 × R

r+1. Then, there exists λ0 ∈ (0, 1)
such that every solution {xn} of (3.1) satisfies

|xn| ≤ ( max
−hr≤i≤0

{|xi|})λ
n
0 , n ∈ Z

0,(3.10)

where λ0 is chosen as in Theorem 2.4.

Theorem 3.5. Assume that 0 < p ≤ 1. Let qi, Υ ∈ R
+
0 , hi ∈ Z

0, i =
0, . . . , r−1; qr ∈ R

+, hr ∈ Z
+, where 0 = h0 < h1 < · · · < hr. Let αi, βi ∈ R

+,
∑r

i=0 αi = 1 and [(1 − δ)Πri=0βi + δ
∑r

i=0 qi] < p ≤ 1, where 0 ≤ δ ≤ 1 is a

constant. If

|f(n, xn, xn−h1
, . . . , xn−hr

)| ≤
r

∑

i=0

δqi|xn−hi
|+ (1− δ)(Πri=0βi)|xn−hi

|αi +Υ

(3.11)

for all (n, xn, xn−h1
, . . . , xn−hr

) ∈ Z
0 ×R

r+1, then there exists λ0 ∈ (0, 1) such
that, for every solution {xn} of equation (3.1),

|xn| ≤ ( max
−hr≤i≤0

{|xi|})λ
n
0 + Λ, n ∈ Z

0,(3.12)

where Λ = (p− δ
∑r

i=0 qi− (1− δ)Πri=0βi)
−1Υ, and λ0 is chosen as in Theorem

2.7. As a consequence, S =
{

φ ∈ R
∣

∣ |φ| ≤ Λ
}

is a positive attracting set of

(3.1).

Proof. As in [2], it is straightforward to show that every solution xn of (3.1)
can be written in the form

xn = x0(1− p)n +

n−1
∑

i=0

(1− p)n−i−1f(i, xi, xi−h1
, . . . , xi−hr

), n ∈ Z
0.(3.13)

By using (3.11), we obtain

|xn| ≤ |x0|(1− p)n

(3.14)

+

n−1
∑

i=0

(1 − p)n−i−1(

r
∑

j=0

δqj |xi−hj
|+(1−δ)(Πrj=0βj)|xi−hj

|αi+Υ), n∈Z
0.

For each n = −hr, . . . , 0, let vn = |xn| and for each n ∈ Z
+, we let

vn = |x0|(1− p)n

(3.15)
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+

n−1
∑

i=0

(1− p)n−i−1(

r
∑

j=0

δqj |xi−hj
|+ (1 − δ)(Πrj=0βj)|xi−hj

|αi +Υ).

Then, we have |xn| ≤ vn, n ∈ Z
−hr , and hence,

∆vn = −pvn +
r

∑

i=0

δqi|xn−hi
|+ (1 − δ)(Πri=0βi)|xn−hi

|αi +Υ

≤ −pvn +

r
∑

i=0

δqivn−hi
+ (1− δ)(Πri=0βi)(v

αi

n−hi
) + Υ, n ∈ Z

0.(3.16)

Therefore, by Theorem 2.7, we obtain

|xn| ≤ vn ≤ ( max
−hr≤i≤0

{vi})λ
n
0 + Λ = ( max

−hr≤i≤0
{|xi|})λ

n
0 + Λ, n ∈ Z

0,(3.17)

where Λ = (p− δ
∑r

i=0 qi− (1− δ)Πri=0βi)
−1Υ, and λ0 is chosen as in Theorem

2.7. This completes the proof of the theorem. �

Remark 3.6. When we take δ = 0. By Theorem 3.5 we have the following
result.

Theorem 3.7. Assume that 0 < p ≤ 1. Let Υ ∈ R
+
0 , hi ∈ Z

0, i = 0, . . . , r− 1;
hr ∈ Z

+, where 0 = h0 < h1 < · · · < hr. Let αi, βi ∈ R
+,

∑r

i=0 αi = 1 and

Πri=0βi < p ≤ 1. If

|f(n, xn, xn−h1
, . . . , xn−hr

)| ≤ (Πri=0βi)|xn−hi
|αi +Υ(3.18)

for all (n, xn, xn−h−1, . . . , xn−hr
) ∈ Z

0 × R
r+1, then there exists λ0 ∈ (0, 1)

such that, for every solution {xn} of equation (3.1),

|xn| ≤ ( max
−hr≤i≤0

{|xi|})λ
n
0 + Λ, n ∈ Z

0,(3.19)

where Λ = (p − Πri=0βi)
−1Υ, and λ0 is chosen as in Theorem 2.10. As a

consequence, S =
{

φ ∈ R
∣

∣|φ| ≤ Λ
}

is a positive attracting set of (3.1).

Remark 3.8. When we take Υ = 0. By Theorem 3.5 we have the following
result.

Theorem 3.9 ([1, Theorem 3.2]). Assume that 0 < p ≤ 1. Let qi ∈ R
+
0 ,

hi ∈ Z
0, i = 0, . . . , r− 1; ar, qr ∈ R

+, hr ∈ Z
+, where 0 = h0 < h1 < · · · < hr.

Let αi, βi ∈ R
+,

∑r

i=0 αi = 1 and [(1 − δ)Πri=0βi + δ
∑r

i=0 qi] < p ≤ 1, where
0 ≤ δ ≤ 1 is a constant. If

|f(n, xn, xn−h1
, . . . , xn−hr

)| ≤
r

∑

i=0

δqi|xn−hi
|+ (1− δ)(Πri=0βi)|xn−hi

|αi

(3.20)

for all (n, xn, xn−h−1, . . . , xn−hr
) ∈ Z

0 × R
r+1, then there exists λ0 ∈ (0, 1)

such that, for every solution {xn} of equation (3.1),

|xn| ≤ ( max
−hr≤i≤0

{|xi|})λ
n
0 , n ∈ Z

0,(3.21)
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λ0 is chosen as in Theorem 2.7. As a consequence, the trivial solution of the

equation (3.1) is globally asymptotically stable.
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