• Title/Summary/Keyword: Disaster Prevention Performance

Search Result 343, Processing Time 0.023 seconds

A numerical study on the performance of the smoke exhaust system according to the smoke exhaust method in emergency station for railway tunnel (철도터널 구난역의 제연방식에 따른 제연성능에 관한 수치 해석적 연구)

  • Ryu, Ji-Oh;Kim, Jin-Su;Seo, Jong-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.6
    • /
    • pp.845-856
    • /
    • 2017
  • In the long railway tunnel, in order to secure safety in case of fire, it is required a emergency station. However, there is no standard or research results on smoke exhaust method and exhaust flow rate in emergency station, so it is necessary to study the smoke exhaust system for emergency station. In this study, we are created a numerical analysis model for emergency station where the evacuation cross passage connected to the service tunnel or the relative tunnel was installed at regular intervals (40 m intervals). And the fire analysis are carried out by varying the fire intensity (15, 30MW), the smoke exhaust method (only air supply, forced air supply and exhaust, forced air exhaust only), and the air flow rate (7, 14, $40m^3/s$). From the results of fire analysis, temperature and CO concentration are analyzed and ASET based on the limit temperature are compared at various condition. As a result, in the case with fire intensity of 15 MW, it is shown that a sufficiently safe evacuation environment can be ensured by applying forced air supply and exhaust method or forced air exhaust only method when the air flow rate is $7m^3/s$ above. In case of fire intensity of 30 MW, it is impossible to maintain the safety evacuation environment for more than 900 seconds when the exhaust air volume is below $14m^3/s$. And when the air flow rate is $40m^3/s$, the exhaust port is disposed at the side portion of the upper duct, which is most advantageous for securing the temperature-based safety.

The study on performance evaluation of heat resistance and smoke control system using air-curtain system in tunnel (터널용 에어커튼 시스템의 내열 및 제연 성능 평가 연구)

  • Park, Byoung-Jik;Shin, Hyun-Jun;Yoo, Yong-Ho;Park, Jin-Ouk;Kim, Yang-Kyun;Kim, Hwi-Seong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.4
    • /
    • pp.743-755
    • /
    • 2018
  • Tunnel is a semi-closed structure similar to underground space where the smoke generated from fire fills the space fast while escaping from the space slow. Because of such characteristics, when the fire breaks out by traffic accident, the vehicles are jammed making it difficult for the people to evacuate from the scene as well as for the fire engine to gain access to the scene. For such reasons, tunnels are globally categorized into some disaster classes for differentiated facilities and operation approaches. In Korea, less than a 1 km-long tunnel accounts for 80.0% and such a short tunnel which is categorized into Class III is not required to have smoke control system. In this study, a full-scale fire test was conducted in a bid to apply air curtain system using heat-resistant sirocco fan to a less than 1 km-long tunnel. To that end, heat resistance test to verify the normal operation at $250^{\circ}C$ for 60 minutes was conducted. Consequently, despite of rapid rising-temperature and increasing-carbon dioxide inside the air curtain (direction of fire in tunnel), initial condition was found to have been sustained outside the air curtain (opposite direction of fire in tunnel).

Bond Behavior of Epoxy Coated Reinforcement Using Direct Pull-out Test and Beam-End Test (직접인발시험과 보-단부 시험을 이용한 에폭시 도막 철근의 부착특성)

  • Kim, Jee-Sang;Kang, Won Hyeak
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.271-278
    • /
    • 2019
  • The corrosion of reinforcements embedded in concrete causes severe deterioration in reinforced concrete structures. As a countermeasure, epoxy coated reinforcements are used to prevent corrosion of reinforcements. When epoxy coated bars are used, the resistance of corrosion is excellent, but epoxy coating on the bars have a disadvantage of reduction in bond capacity comparing to that of normal bars. Therefore, it is necessary to confirm the bond performance of epoxy coated reinforcements through experimental and analytical methods. Bond behaviors of epoxy coated bars for various diameters of 13 and 19mm and thicknesses of cover concrete of 3 types(ratio of cover to bar diameter) are examined. As the diameters of the epoxy coated bars increase, the difference of bond strength between epoxy coated and uncoated bars also increases and damage patterns showed pull out failure. In addition, finite element analysis was performed based on the bond-slip relationship obtained by direct pullout test and compared with the flexural test results. It is considered that flexural member test is more useful than pullout test for simulating the behavior of actual structure.

An Experimental Study on the Flexural Strength of Lap Spliced Ultra High Strength Fiber Reinforced Concrete Beams (이음된 초고강도 강섬유보강콘크리트 보의 휨강도에 관한 실험적 연구)

  • Bae, Baek-Il;Son, Dong-Hee;Choi, Hyun-Ki;Jung, Hyung-Suk;Choi, Chang-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.76-83
    • /
    • 2021
  • This study examines the bending behavior of lap-spliced ultra-high-strength fiber-reinforced concrete members and evaluates the safety of the design codes for ultra-high-strength fiber-reinforced concrete structures. An experiment on a total of six beams was performed. The main variables were the fiber-inclusion and the lap-spliced length at the center of the beams. The steel fibers in a volume fraction of 2% were used, and the lap-splice lengths were determined to be 8db and 16db. As a result of the test, the specimens not reinforced with fiber lost abrupt load-bearing capacity at the lap region and did not experience yielding of the reinforcing bar. In the case of fiber-reinforced concrete, if a lap-splice length of 16db is secured, the yielding of the main reinforcing bar can be experienced, and appropriate flexural strength can be expressed. Based on the experimental results of this study, as a result of reviewing the lap-splice length calculation formulas of the current design standards and the ultra-high-strength concrete structural design recommendations, it was found that all of them were evaluated conservatively.

The Study on the Fire Monitoring Dystem for Full-scale Surveillance and Video Tracking (전방위 감시와 영상추적이 가능한 화재감시시스템에 관한 연구)

  • Baek, Dong-hyun
    • Fire Science and Engineering
    • /
    • v.32 no.6
    • /
    • pp.40-45
    • /
    • 2018
  • The omnidirectional surveillance camera uses the object detection algorithm to level the object by unit so that broadband surveillance can be performed using a fisheye lens and then, it was a field experiment with a system composed of an omnidirectional surveillance camera and a tracking (PTZ) camera. The omnidirectional surveillance camera accurately detects the moving object, displays the squarely, and tracks it in close cooperation with the tracking camera. In the field test of flame detection and temperature of the sensing camera, when the flame is detected during the auto scan, the detection camera stops and the temperature is displayed by moving the corresponding spot part to the central part of the screen. It is also possible to measure the distance of the flame from the distance of 1.5 km, which exceeds the standard of calorific value of 1 km 2,340 kcal. In the performance test of detecting the flame along the distance, it is possible to be 1.5 km in width exceeding $56cm{\times}90cm$ at a distance of 1km, and so it is also adaptable to forest fire. The system is expected to be very useful for safety such as prevention of intrinsic or surrounding fire and intrusion monitoring if it is installed in a petroleum gas storage facility or a storing place for oil in the future.

One-Dimensional Heat Transfer Model to Predict Temperature Distribution in Voided slabs subjected to fire (화재 시 중공슬래브의 온도분포 예측을 위한 1방향 열전달 모델)

  • Chung, Joo-Hong;Choi, Hyun-Ki
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.5
    • /
    • pp.60-67
    • /
    • 2019
  • In general, a reinforced concrete slabs are known to have a high fire resistance performance due to thermal properties of concrete materials. However, according to previous research, the thermal behavior of voided slabs is reported to be different from that of conventional RC solid slabs, and the differences seem to be caused by the air layer formed inside the voided slab. Therefore, it is difficult to estimate the temperature distribution of the voided slab under fire by using the existing methods that do not take into account the air layer inside the voided slab. In this study, a numerical analysis model was proposed to estimate the temperature distribution of voided slabs under fire, and evaluated. Heat transfer of slabs under fire is generally caused by conduction, convection and radiation, and time-dependent temperature changes of slab can be determined considering these phenomena. This study proposed a numerical method to estimate the temperature distribution of voided slabs under fire based on a finite difference method in which a cross-section of the slab is divided into a number of layers. This method is also developed to allow consideration of heat transfer through convection and radiation in air layer inside of slabs. In addition, the proposed model was also validated by comparison with the experimental results, and the results showed that the proposed model appropriately predicts the temperature distribution of voided slabs under fire.

A Study on Orthogonal Image Detection Precision Improvement Using Data of Dead Pine Trees Extracted by Period Based on U-Net model (U-Net 모델에 기반한 기간별 추출 소나무 고사목 데이터를 이용한 정사영상 탐지 정밀도 향상 연구)

  • Kim, Sung Hun;Kwon, Ki Wook;Kim, Jun Hyun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.4
    • /
    • pp.251-260
    • /
    • 2022
  • Although the number of trees affected by pine wilt disease is decreasing, the affected area is expanding across the country. Recently, with the development of deep learning technology, it is being rapidly applied to the detection study of pine wilt nematodes and dead trees. The purpose of this study is to efficiently acquire deep learning training data and acquire accurate true values to further improve the detection ability of U-Net models through learning. To achieve this purpose, by using a filtering method applying a step-by-step deep learning algorithm the ambiguous analysis basis of the deep learning model is minimized, enabling efficient analysis and judgment. As a result of the analysis the U-Net model using the true values analyzed by period in the detection and performance improvement of dead pine trees of wilt nematode using the U-Net algorithm had a recall rate of -0.5%p than the U-Net model using the previously provided true values, precision was 7.6%p and F-1 score was 4.1%p. In the future, it is judged that there is a possibility to increase the precision of wilt detection by applying various filtering techniques, and it is judged that the drone surveillance method using drone orthographic images and artificial intelligence can be used in the pine wilt nematode disaster prevention project.

An Analysis on Storing Container Corrosion of Powder Extinguisher according to Durable Years of Each Type-3 Powder Extinguisher (제3종 분말소화기 대상별 내용연수에 따른 저장용기의 부식도 분석)

  • Son, Ju-Dal;Kong, Ha-Sung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.661-666
    • /
    • 2022
  • This study presented the criteria for analyzing the corrosion of the powder extinguisher storage container according to the useful life, and conducted an experiment on the market area, the factory area, and the apartment building area to ensure proper performance at all times and drew the following conclusions.First, the experimental value for the degree of corrosion of external contact storage containers was found to be unsuitable in the factory area in 2014. In 2012, the experimental value for the degree of corrosion of external contact storage containers in apartment complexes was found to be inappropriate. Second, the experimental value for the dropout of the external paint in the storage container was found to be inappropriate in the factory area in 2014. In 2012, the experimental value of the degree of coating of the external paint storage container in the apartment building area was found to be inappropriate. It was analyzed that the useful life of the fire extinguisher is 10 years, and if it passes the sample test only once, it will be used for up to 13 years, but in fact, the difference varies greatly depending on the surrounding environment of the fire extinguisher place. Since the degree of corrosion of the storage container of the fire extinguisher from 8 years of the fire extinguisher's useful life is clearly decreased, it is judged that 5 years of the fire extinguisher is appropriate.

Exploring the power of physics-informed neural networks for accurate and efficient solutions to 1D shallow water equations (물리 정보 신경망을 이용한 1차원 천수방정식의 해석)

  • Nguyen, Van Giang;Nguyen, Van Linh;Jung, Sungho;An, Hyunuk;Lee, Giha
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.12
    • /
    • pp.939-953
    • /
    • 2023
  • Shallow water equations (SWE) serve as fundamental equations governing the movement of the water. Traditional numerical approaches for solving these equations generally face various challenges, such as sensitivity to mesh generation, and numerical oscillation, or become more computationally unstable around shock and discontinuities regions. In this study, we present a novel approach that leverages the power of physics-informed neural networks (PINNs) to approximate the solution of the SWE. PINNs integrate physical law directly into the neural network architecture, enabling the accurate approximation of solutions to the SWE. We provide a comprehensive methodology for formulating the SWE within the PINNs framework, encompassing network architecture, training strategy, and data generation techniques. Through the results obtained from experiments, we found that PINNs could be an accurate output solution of SWE when its results were compared with the analytical method. In addition, PINNs also present better performance over the Artificial Neural Network. This study highlights the transformative potential of PINNs in revolutionizing water resources research, offering a new paradigm for accurate and efficient solutions to the SVE.

Analysis of RSET According to Exit Installation Standards for the Exterior of a Food Manufacturing Plant Building (식품공장 건축물 바깥쪽으로의 출구 설치기준에 따른 RSET 분석)

  • Park, Ha-Soung;Lee, Jae-Wook;Kong, Ha-Sung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.201-208
    • /
    • 2024
  • In this study, we investigated whether the evacuation time according to the exit installation standards specified in the building code during a food factory fire is compatible with the evacuation time based on the performance-based design specified by the fire department, in order to determine if evacuation safety is ensured. We used the Pathfinder program to confirm the evacuation time, and experimented with three scenarios for exit installation standards towards the outside of the building: 60m, 80m, and 100m. The target building in the experiment corresponded to the building code's exit installation standard of 100m from each dwelling. The experimental results showed tt in the cases of 80m and 100m, ASET exceeded RSET, indicating tt evacuation safety was not ensured, while in the case of 60m, evacuation safety was maintained. Through this study, it was confirmed tt even when the exit installation standards towards the outside of the building are met, evacuation safety may not be guaranteed.