• Title/Summary/Keyword: Dirichlet's theorem

Search Result 32, Processing Time 0.023 seconds

DIRICHLET-JORDAN THEOREM ON $SIM$ SPACE

  • Kim, Hwa-Joon;Lekcharoen, S.;Supratid, S.
    • Korean Journal of Mathematics
    • /
    • v.17 no.1
    • /
    • pp.37-41
    • /
    • 2009
  • We would like to propose Dirichlet-Jordan theorem on the space of summable in measure(SIM). Surely, this is a kind of extension of bounded variation([1, 4]), and considered as an application of fuzzy set such that ${\alpha}$-cut is 0.

  • PDF

A CHARACTERIZATION OF DIRICHLET SETS

  • Lee, Hung-Hwan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.27 no.2
    • /
    • pp.183-188
    • /
    • 1990
  • The notion of a Dirichlet set has been studied for several decades. Such sets are named in honour of Dirichlet's Theorem [4, pp.235] which, in modern terminology, simply says that every finite set in R is a dirichlet set. In this paper, we present a structure theorem which characterizes all D-sets on the real line. We also use our structure theorem to give a new proof of a known criterion for proving that a set fails to be a D-set.

  • PDF

SINGULAR POTENTIAL BIHARMONIC PROBLEM

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.21 no.4
    • /
    • pp.483-493
    • /
    • 2013
  • We investigate the multiplicity of the solutions for a class of the system of the biharmonic equations with some singular potential nonlinearity. We obtain a theorem which shows the existence of the nontrivial weak solution for a class of the system of the biharmonic equations with singular potential nonlinearity and Dirichlet boundary condition. We obtain this result by using variational method and the generalized mountain pass theorem.

MULTIPLICITY OF SOLUTIONS FOR A CLASS OF NON-LOCAL ELLIPTIC OPERATORS SYSTEMS

  • Bai, Chuanzhi
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.3
    • /
    • pp.715-729
    • /
    • 2017
  • In this paper, we investigate the existence and multiplicity of solutions for systems driven by two non-local integrodifferential operators with homogeneous Dirichlet boundary conditions. The main tools are the Saddle point theorem, Ekeland's variational principle and the Mountain pass theorem.

RUDNICK AND SOUNDARARAJAN'S THEOREM FOR FUNCTION FIELDS IN EVEN CHARACTERISTIC

  • Jung, Hwanyup
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.1-12
    • /
    • 2022
  • In this paper we prove an even characteristic analogue of the result of Andrade on lower bounds for moment of quadratic Dirichlet L-functions in odd characteristic. We establish lower bounds for the moments of Dirichlet L-functions of characters defined by Hasse symbols in even characteristic.

COMPACTNESS AND DIRICHLET'S PRINCIPLE

  • Seo, Jin Keun;Zorgati, Hamdi
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.18 no.2
    • /
    • pp.193-207
    • /
    • 2014
  • In this paper we explore the emergence of the notion of compactness within its historical beginning through rigor versus intuition modes in the treatment of Dirichlet's principle. We emphasize on the intuition in Riemann's statement on the principle criticized by Weierstrass' requirement of rigor followed by Hilbert's restatement again criticized by Hadamard, which pushed the ascension of the notion of compactness in the analysis of PDEs. A brief overview of some techniques and problems involving compactness is presented illustrating the importance of this notion. Compactness is discussed here to raise educational issues regarding rigor vs intuition in mathematical studies. The concept of compactness advanced rapidly after Weierstrass's famous criticism of Riemann's use of the Dirichlet principle. The rigor of Weierstrass contributed to establishment of the concept of compactness, but such a focus on rigor blinded mathematicians to big pictures. Fortunately, Poincar$\acute{e}$ and Hilbert defended Riemann's use of the Dirichlet principle and found a balance between rigor and intuition. There is no theorem without rigor, but we should not be a slave of rigor. Rigor (highly detailed examination with toy models) and intuition (broader view with real models) are essentially complementary to each other.

EXISTENCE OF THE SOLUTIONS FOR THE SINGULAR POTENTIAL ELLIPTIC SYSTEM

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.20 no.1
    • /
    • pp.107-116
    • /
    • 2012
  • We investigate the multiple solutions for a class of the elliptic system with the singular potential nonlinearity. We obtain a theorem which shows the existence of the solution for a class of the elliptic system with singular potential nonlinearity and Dirichlet boundary condition. We obtain this result by using variational method and critical point theory.

NUMBER OF THE NONTRIVIAL SOLUTIONS OF THE NONLINEAR BIHARMONIC PROBLEM

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.18 no.2
    • /
    • pp.201-211
    • /
    • 2010
  • We investigate the number of the nontrivial solutions of the nonlinear biharmonic equation with Dirichlet boundary condition. We give a theorem that there exist at least three nontrivial solutions for the nonlinear biharmonic problem. We prove this result by the finite dimensional reduction method and the shape of the graph of the corresponding functional on the finite reduction subspace.