Commun. Korean Math. Soc. 19 (2004), No. 2, pp. 205210

INFINITELY MANY PRIMES OF THE FORM
An+1 ANOTHER ELEMENTARY PROOF

JISANG Y00

ABSTRACT. According to Diriclet’s Theorem, there are infinitely
many primes of the form An+1 for any fixed positive integer A. For
this, there already exists a classical simple proof using cyclotomic
polynomials. In this paper, we develop another elementary proof of
this statement.

1. Introduction

Dirichlet’s Theorem is the following.

THEOREM 1.1 (Dirichlet’s Theorem). If A and B are relatively prime
positive integers, there are infinitely many primes of the form An + B.
In other words, the set {An+ B: n € N} contains infinitely many
primes.

This theorem is known to be proved by P. G. L. Dirichlet using analy-
sis. Here we give an elementary proof of the restricted case when B = 1.
This restricted case is that for any fixed positive integer A, there are
infinitely many primes of the form An + 1. Actually, there already is
a well-known classical and simple proof of this fact using cyclotomic
polynomials and the proof can be found in [1] and [2].

The purpose of this paper is to provide another elementary proof
without using cyclotomic polynomials. We concentrate on constructing
an irreducible fraction such that every prime factor of the numerator of
it is of the form An + 1 and that the numerator is greater than one so
that the numerator has at least one prime factor.
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2. Lemmas

To achieve our goal, we need two lemmas. The first lemma is about
A_

polynomials over Z. And the second lemma. is about %;))a—_ll— where a is

a factor of the integer A > 1 and z is a positive integer. The fraction

o (Ai)(?/;;)a~1) plays a key role in our main proof.
a a<

LeMMA 2.1. Let f(z),g(z) € Z[ ] be nonzero polynomials over Z such
that there is no polynomial h(z) € Q[z] over Q satisfying h(z)g(z) =
f(z). Then the set defined by

D(g,f)={ieN: g(i) divides f(i)}

is finite.

PROOF. There exist polynomials ¢'(z), '(z) € Q[z] over Q such that:
f(z) = ¢(z)g(z) + r'(z),0 < deg(r’) < deg(g) and r’(z) is a nonzero
polynomial.

Then there is a number M € N such that M¢'(z) € Z[z], Mr'(z) €
Zix].

Let g(z) = Mq'(z),r(z) = Mr'(z), then we have:

Mf(z) = q(x)g(z) + r(z), g(z),r(z) € Zlz].
And r(z) is still a nonzero polynomial such that 0 < deg(r) < deg(g).
Since r(z), g(z) are nonzero polynomials, they have a finite number of
zeros, so that there exists N; € N such that:

r(2)

’L>N1==>—;£0

g(9)

(i)

Since 0 < deg(r) < deg(g), we have lim;_,, 7 = 0, so that there exists

Ny € N such that: :
1 .

i > Ny = —5 < f&)-

9(3)

l\Dlr—-a

If we let N = max(N1, N2), we have:
r()

9(?)

Then for each integer ¢ with ¢ > N, 5% is not an integer so that g(i) ¢

(7). Thus,

i>N=0<

i> N = g(i){r(3).
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From M f(i) = q(i)g ( )+ (i), we see that g(i) { () implies g(3) { M £ ()
and further g(i) 1 f(¢). Therefore we have:

i>N = g(i){ f(3).

This shows that any element of D(g, f) is less than or equal to N,
therefore the set D(g, f) is finite. O

LEMMA 2.2. Let A € N be a number with A > 1. Let a € N be a
factor of A, i.e. a | A. Let x € N be a number. Then ((’:—z))a—f is a

positive integer and
Az)4 —1 e
ng (((.A(L’))—a—l, (ACC) — 1> = 1.
(

PROOF. First, (Az)4 — 1 and (Az)® — 1 are positive integers. And
there exists b € N such that ab = A. Now we observe :

b—1
-
A =1 = 2 ((4x)%)
(Az)e =1
This equation shows that (( )): 11
tion, we get:

is a positive integer. From this equa-

T A b1
((%)w—_—i =Y 1=b (mod (Az)®—1)
i=0

(Az)*—1=0—-1=-1 (mod b).
Consequently,
ged (((i?T— (Ax)* — ) = ged (b, (Ax)* — 1) = ged(b,—1) = 1.
O

3. The proof

Now, we are going to prove the main theorem after introducing the
function num.

DEFINITION 3.1. (Here Q4 denotes the set of all positive rational
numbers.) We define the function num : Q4 — N as follows (‘num’ is
the abbreviation of ‘numerator’). For each r € Q, define num(r) = m,

where m,n € N is the unique pair such that gecd(m,n) =1 and r = 7%

For arbitrary two numbers a,b € N, we have:
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I.a|b <= num(§) =1,
2. num(a) = a,
3. num(%) | a.

Now, we declare and prove a theorem which will be proved to be
equivalent to our main theorem. The proof of the following theorem
saying the existence of at least one prime of the form An+1 is the main
part of this paper. Proving the fact that the following theorem implies
the existence of infinitely many primes of the form An + 1 is easy as we
shall see.

THEOREM 3.2. Let A € N be a number with A > 1. Then there
exists a prime number p of the form An + 1.

Proor. This proof consists of three steps. In Step 1, we construct
a particular positive rational number S with num(S) > 1. In Step 2,
we prove some properties of num(S). And finally in Step 3, we fix an
arbitrary prime factor p of num(.S) and prove that p is of the form An+1.

Step 1 :

Define two polynomial E(z), F(z) € Z[z] as follows:

E(z)=z*—1, F(z)= H (% = 1).
alA,a<A

If the polynomial FE(x) is a factor of the polynomial F(z) as element of
Qz], every zero of E(z) would be also a zero of F(x). But e isa
zero of E(z) and is not a zero of F(z). Therefore the polynomial F(x)
is not a factor of the polynomial F(z). By Lemma 2.1, the set defined

by
DE,Fy={ieN: E(@)|F()}
is finite. Since D(FE, F') is finite, we can choose a number k € N such

that Ak ¢ D(E,F). Then we have E(Ak) { F(Ak). If we define S as
follows,

o B(Ak) _ (AK)4 ~1
F(Ak)  Tlajaaca((AR)* = 1)
We get S € Q4 and num(S) > 1.
Step 2 :
By the definition of S, we have:

(3.1) num(S) | ((Ak)A —-1).
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For each a; € N such that a1 | A,a; < A, we can express S as follows:
((4R)* = 1)/((AR) — 1)

Ha]A,a<A,a;éa1 ((Ak;)a - 1)

Of the right-hand-side of the above expression, the numerator and the
denominator are integers, so that num(S) | ((Ak)4 — 1)/((Ak)» —1).
Since the choice of a; was arbitrary, we have

(AK)A -1
(Ak)e —1

S =

(3.2) num(S) | forall a suchthat a|A and a < A.

Therefore,

(AK)A -1
(Ak)e —1
for all a such that a] A and a < A.

ged(num(S), (Ak)* — 1) | ged ( , (Ak)* — 1)

Then by Lemma 2.2, we have
(3.3) ged(num(S), (Ak)*—1) =1 for all a such that a | A and a < A.

Step 3 :

Since num(S) > 1, num(S) has at least one prime factor p. Now,
we will show that the prime factor p is of the form An + 1. From the
equations 3.1, 3.3, we have the following two results:

1. p| ((Ak)A — 1),

2. p{((Ak)*—1) forall a suchthat a|A and a < A.

And these two results express the following two facts:

1. (Ak)A =1 (mod p),

2. (Ak)*#1 (mod p) forall a suchthat a|A and a < A.
These show that the order of Ak in the multiplicative group Z, is A.
Since the order of each element of Z; divides the order of the group Ly,
namely (p — 1), we have

Al(p-1).
Therefore the prime p is of the form An + 1. O

COROLLARY 3.3. Let A € N be a number with A > 1. Then there
are infinitely many primes of the form An + 1.

PRrROOF. Let i € N be an arbitrary positive integer. Then by Theo-
rem 3.2, there exists a prime number p; of the form (iA)n + 1 and we
get 1A | (p; — 1). Since p; is of the form (iA)n + 1, p; is also of the form
An + 1. We observe that i < iA < p; — 1 so that ¢ £ p;. Therefore p; is
a prime number of the form An + 1 greater than or equal to 7. Since i
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was arbitrary, we always have arbitrary large prime number of the form
An + 1. a

In the above corollary, we can easily get rid of the restriction A > 1.
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