• 제목/요약/키워드: Dimensional reduction method

검색결과 563건 처리시간 0.028초

An Ensemble Classifier using Two Dimensional LDA

  • Park, Cheong-Hee
    • 한국멀티미디어학회논문지
    • /
    • 제13권6호
    • /
    • pp.817-824
    • /
    • 2010
  • Linear Discriminant Analysis (LDA) has been successfully applied for dimension reduction in face recognition. However, LDA requires the transformation of a face image to a one-dimensional vector and this process can cause the correlation information among neighboring pixels to be disregarded. On the other hand, 2D-LDA uses 2D images directly without a transformation process and it has been shown to be superior to the traditional LDA. Nevertheless, there are some problems in 2D-LDA. First, it is difficult to determine the optimal number of feature vectors in a reduced dimensional space. Second, the size of rectangular windows used in 2D-LDA makes strong impacts on classification accuracies but there is no reliable way to determine an optimal window size. In this paper, we propose a new algorithm to overcome those problems in 2D-LDA. We adopt an ensemble approach which combines several classifiers obtained by utilizing various window sizes. And a practical method to determine the number of feature vectors is also presented. Experimental results demonstrate that the proposed method can overcome the difficulties with choosing an optimal window size and the number of feature vectors.

3차원 압축성 유동 해석을 위한 효율적인 다중 격자 DADI 기법 (An Efficient Multigrid Diagonalized ADI Method for 3-Dimensional Compressible Flow Analysis)

  • 박수형;성춘호;권장혁
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1998년도 춘계 학술대회논문집
    • /
    • pp.29-34
    • /
    • 1998
  • An efficient 3-dimensional compressible solver is developed using the second-order upwind TVD scheme and the multigrid diagonalized ADI method. The multigrid method is improved so that the present DADI algorithm obtains better convergence rates. Results are computed on Cray C90 computer for transonic unsaperated flows past ONERA-M6 wing to demonstrate the accuracy and efficiency. The results show good agreement with experimetal data. A reduction of four orders of residual for 3-dimensional transonic flow is obtained about 99 seconds.

  • PDF

음성구간 검출기의 실시간 적응화를 위한 음성 특징벡터의 차원 축소 방법 (Dimension Reduction Method of Speech Feature Vector for Real-Time Adaptation of Voice Activity Detection)

  • 박진영;이광석;허강인
    • 융합신호처리학회논문지
    • /
    • 제7권3호
    • /
    • pp.116-121
    • /
    • 2006
  • 본 논문에서는 다양한 잡음환경에서의 실시간 적응화 기법을 적용하기 위한 선결 과제로 다차원 음성 특정 벡터를 저차원으로 축소하는 방법을 제안한다. 제안된 방법은 특징 벡터를 확률 우도 값으로 매핑시켜 비선형적으로 축소하는 방법으로 음성 / 비음성의 분류는 우도비 검증 (Likelihood Ratio Test; LRT) 을 이용하여 분류하였다. 실험 결과 고차원 특징 벡터를 이용하여 분류한 결과와 대등하게 분류됨을 확인할 수 있었다. 그리고, 제안된 방법에 의해 검출된 음성 데이터를 이용한 음성인식 실험에서도 10차 MFCC(Mel-Frequency Cepstral Coefficient)를 사용하여 분류한 경우와 대등한 인식률을 보여주었다.

  • PDF

유한요소-전달행렬의 혼합물을 이용한 3차원 구조물의 진동해석 (Vibration Analysis of 3-Dimensional Structure by using Mixed Method of Finite Element-Transfer Matrix)

  • 이동명
    • 한국공작기계학회논문집
    • /
    • 제10권1호
    • /
    • pp.16-22
    • /
    • 2001
  • In this study for reduction degree of freedom of dynamic model, a mixed method to combined finite element method and transfer matrix method is presented. This offers the advantages of an automatic reduction in the size of the eigenvalues problem and of a straightforward means of dynamic substructuring. The analytical procedure in this method for dynamic analysis of 3-dimensional cantilevered box beam are described. the result of numerical example is shown to demonstate the efficiency and accuracy of this method. The result form this example agree well those obtained by ANSYS, By using this technique, the number of nodes required in the regular finite element method is reduced and therefore a smaller com-puter can be used.

  • PDF

다차원 데이터의 군집분석을 위한 차원축소 방법: 주성분분석 및 요인분석 비교 (A dimensional reduction method in cluster analysis for multidimensional data: principal component analysis and factor analysis comparison)

  • 홍준호;오민지;조용빈;이경희;조완섭
    • 한국빅데이터학회지
    • /
    • 제5권2호
    • /
    • pp.135-143
    • /
    • 2020
  • 본 논문은 농식품 소비자패널 데이터에서 소비자의 유형을 나눌 때에 변수간 연관성이 많은 장바구니 분석에서 전처리 방법과 차원축소의 방법을 제안한다. 군집분석은 다변량 자료에서 관측 개체를 몇 개의 군집으로 나눌 때 널리 사용되는 분석기법이다. 하지만 여러 개의 변수가 연관성을 가진 경우에는 차원축소를 통한 군집분석이 더 효과적일 수 있다. 본 논문은 1,987 가구를 대상으로 조사한 식품소비 데이터를 K-means 방법을 사용하여 군집화하였으며, 군집을 나누기 위해 17개의 변수를 선정하였고, 17개의 다중공선성 문제와 군집을 나누기 위한 차원축소의 방법 중 주성분 분석과 요인분석을 비교하였다. 본 연구에서는 주성분분석과 요인분석 모두 2개의 차원으로 축소하였으며 주성분분석에서는 3개의 군집으로 나뉘었지만 분석하고자 하였던 소비 패턴에 대한 군집의 특성이 잘 나타나지 않았으며 요인분석에서는 분석가가 보고자 하는 소비 패턴의 특징이 잘 나타났다.

A Three-Dimensional Locally One-Dimensional Multiresolution Time-Domain Method Using Daubechies Scaling Function

  • Ryu, Jae-Jong;Lee, Wu-Seong;Kim, Ha-Chul;Choi, Hyun-Chul
    • Journal of electromagnetic engineering and science
    • /
    • 제9권4호
    • /
    • pp.211-217
    • /
    • 2009
  • A three-dimensional locally one-dimensional multiresolution time-domain(LOD-MRTD) method is introduced and unconditional stability is proved analytically. The updating formulations have fewer terms on the right-hand side than those of an alternating direction implicit MRTD(ADI-MRTD). The validation of the method is presented using the resonance frequency problem of an empty cavity. The reduction of the numerical dispersion technique is also combined with the proposed method. The numerical examples show that the combined method can improve the accuracy significantly.

DIMENSION REDUCTION FOR APPROXIMATION OF ADVANCED RETRIAL QUEUES : TUTORIAL AND REVIEW

  • SHIN, YANG WOO
    • Journal of applied mathematics & informatics
    • /
    • 제35권5_6호
    • /
    • pp.623-649
    • /
    • 2017
  • Retrial queues have been widely used to model the many practical situations arising from telephone systems, telecommunication networks and call centers. An approximation method for a simple Markovian retrial queue by reducing the two dimensional problem to one dimensional problem was presented by Fredericks and Reisner in 1979. The method seems to be a promising approach to approximate the retrial queues with complex structure, but the method has not been attracted a lot of attention for about thirty years. In this paper, we exposit the method in detail and show the usefulness of the method by presenting the recent results for approximating the retrial queues with complex structure such as multi-server retrial queues with phase type distribution of retrial time, impatient customers with general persistent function and/or multiclass customers, etc.

MBRDR: R-package for response dimension reduction in multivariate regression

  • Heesung Ahn;Jae Keun Yoo
    • Communications for Statistical Applications and Methods
    • /
    • 제31권2호
    • /
    • pp.179-189
    • /
    • 2024
  • In multivariate regression with a high-dimensional response Y ∈ ℝr and a relatively low-dimensional predictor X ∈ ℝp (where r ≥ 2), the statistical analysis of such data presents significant challenges due to the exponential increase in the number of parameters as the dimension of the response grows. Most existing dimension reduction techniques primarily focus on reducing the dimension of the predictors (X), not the dimension of the response variable (Y). Yoo and Cook (2008) introduced a response dimension reduction method that preserves information about the conditional mean E(Y | X). Building upon this foundational work, Yoo (2018) proposed two semi-parametric methods, principal response reduction (PRR) and principal fitted response reduction (PFRR), then expanded these methods to unstructured principal fitted response reduction (UPFRR) (Yoo, 2019). This paper reviews these four response dimension reduction methodologies mentioned above. In addition, it introduces the implementation of the mbrdr package in R. The mbrdr is a unique tool in the R community, as it is specifically designed for response dimension reduction, setting it apart from existing dimension reduction packages that focus solely on predictors.

Zeroth-Order Shear Deformation Micro-Mechanical Model for Periodic Heterogeneous Beam-like Structures

  • Lee, Chang-Yong
    • 동력기계공학회지
    • /
    • 제19권3호
    • /
    • pp.55-62
    • /
    • 2015
  • This paper discusses a new model for investigating the micro-mechanical behavior of beam-like structures composed of various elastic moduli and complex geometries varying through the cross-sectional directions and also periodically-repeated along the axial directions. The original three-dimensional problem is first formulated in an unified and compact intrinsic form using the concept of decomposition of the rotation tensor. Taking advantage of two smallness of the cross-sectional dimension-to-length parameter and the micro-to-macro heterogeneity and performing homogenization along dimensional reduction simultaneously, the variational asymptotic method is used to rigorously construct an effective zeroth-order beam model, which is similar a generalized Timoshenko one (the first-order shear deformation model) capable of capturing the transverse shear deformations, but still carries out the zeroth-order approximation which can maximize simplicity and promote efficiency. Two examples available in literature are used to demonstrate the consistence and efficiency of this new model, especially for the structures, in which the effects of transverse shear deformations are significant.

고차원 공간에서 효과적인 차원 축소 기법 (An Effective Method for Dimensionality Reduction in High-Dimensional Space)

  • 정승도;김상욱;최병욱
    • 전자공학회논문지CI
    • /
    • 제43권4호
    • /
    • pp.88-102
    • /
    • 2006
  • 멀티미디어 정보 검색에서 멀티미디어 데이터는 고차원 공간상의 벡터로 표현된다. 이러한 특정 벡터를 효율적으로 검색하기 위하여 다양한 색인 기법이 제안되어 왔다. 그러나 특정 벡터의 차원이 증가하면서 색인 기법의 효율성이 급격히 떨어지는 차원의 저주 문제가 발생한다. 차원의 저주 문제를 해결하기 위하여 색인하기 이전에 원 특정 벡터를 저차원 공간상의 벡터로 사상하는 차원 축소 기법이 제안된 바 있다. 본 연구에서는 벡터의 놈과 각도 성분을 이용하여 유클리드 거리를 근사하는 함수를 기반으로 하는 새로운 차원 축소 기법을 제안한다. 먼저, 유클리드 거리 근사를 위하여 추정된 각도의 오차의 발생 원인을 분석하고 이 오차를 줄이기 위한 기본 방향을 제시한다. 또한, 고차원 특정 벡터를 다수의 특징 서브 벡터들의 집합으로 분리하고 각 특징 서브 벡터로부터 놈과 각도 성분을 근사하여 차원을 축소하는 새로운 기법을 제안한다. 각도 성분을 정확하게 근사하기 위해서는 올바른 기준 벡터의 설정이 필수적이다. 본 연구에서는 최적 기준 벡터의 조건을 제시하고, Levenberg-Marquardt 알고리즘을 이용하여 기준 벡터를 선정하는 방법을 제안한다. 또한, 축소된 저차원 공간상의 벡터틀을 위한 새로운 거리 함수를 정의하고, 이 거리 함수가 유클리드 거리 함수의 하한 함수가 됨을 이론적으로 증명한다. 이는 제안된 기법이 착오 기각의 발생을 허용하지 않으면서 효과적으로 차원을 줄일 수 있음을 의미하는 것이다. 끝으로, 다양한 실험에 의한 성능 평가를 통하여 제안하는 방법의 우수성을 규명한다.