Acknowledgement
Supported by : Changwon National University
References
- J.R. Artalejo, Analysis of an M/G/1 queue with constant repeated attempts and server vacations, Computers & Operations Research 24 (1997), 493-504. https://doi.org/10.1016/S0305-0548(96)00076-7
- J.R. Artalejo, A classified bibliography of research on retrial queues: Progress in 1990-1999, 7 (1999), 187-211.
- J.R. Artalejo, Accessible bibliography on retrial queues, Mathematical and Computer Modelling 30 (1999), 1-6.
- J.R. Artalejo, Accessible bibliography on retrial queues: Progress in 2000-2009, Mathematical and Computer Modelling 51 (2000) 1071-1081.
- J.R. Artalejo, A. Gomez-Corral, Retrial Queueing Systems, A Computational Approach, Springer-Verlag, Hidelberg, 2008.
- S. Asmussen, Applied Probability and Queues, 2nd Ed., Springer-Verlag, New York, 2003.
- A. Bobbio, A. Horvath and M. Telek, Matching three moments with minimal acyclic phase type distributions, Stochastic Models 21 (2005), 303-326. https://doi.org/10.1081/STM-200056210
- M. Boualem, N. Djellab and D. Aissani, Stochastic inequality for M/G/1 retrial queues with vacations and constant retrial policy, Mathematical and Computer Modelling 50 (2009), 207-212. https://doi.org/10.1016/j.mcm.2009.03.009
- L. Breuer, A. Dudin and V. Klimenok, A Retrial BMAP/PH/N system, Queueing Systems 40 (2002), 433-457. https://doi.org/10.1023/A:1015041602946
- B.D. Choi and Y. Chang, Single server retrial queues with probability calls, Mathematical and Computer Modelling 30 (1999), 7-32.
- B.D. Choi, K.B. Choi and Y.W. Lee, M/G/1 retrial queueing systems with two types of calls and finite capacity, Queueing Systems 19 (1995), 215-229. https://doi.org/10.1007/BF01148947
- J.W. Cohen, Basic problems of telephone traffic theory and the influence of repeated calls, Philips Telecommunication Review 18 (1957), 49-100.
- G. Choudhury, Steady state analysis of an M/G/1 queue with linear retrial policy and two phase service under Bernoulli vacation schedule, Applied Mathematical Modelling 32 (2008), 2480-2489. https://doi.org/10.1016/j.apm.2007.09.020
- G. Choudhry and J.C. Ke, A batch arrival retrial queue with general retrial times under Bernoulli vacation schedule for unreliable server and delayed repair, Applied Mathematical Modelling 36 (2012), 255-269. https://doi.org/10.1016/j.apm.2011.05.047
- J.E. Diamond, A.S. Alfa, Approximation method for M/PH/1 retrial queues with phase type inter-retrial times, European Journal of Operational Research 113 (1999), 620-631. https://doi.org/10.1016/S0377-2217(98)00004-6
- G.I. Falin, On a multiclass batch arrival retrial queue, Advances in Applied Probability 20 (1988), 483-487. https://doi.org/10.1017/S0001867800017109
- G.I. Falin, A survey of retrial queues, Queueing Systems 7 (1990), 127-168. https://doi.org/10.1007/BF01158472
- G.I. Falin, J.R. Artalejo and M. Martin, On the single server retrial queue with priority customers, Queueing Systems 14 (1993), 439-455. https://doi.org/10.1007/BF01158878
- G.I. Falin and J.G.C. Templeton, Retrial Queues, Chapman and Hall, London, 1997.
- A.A. Fredericks and G.A. Reisner, Approximations to stochastic service systems with an application to a retrial model, Bell Systems Technical Journal 58 (1979), 557-576. https://doi.org/10.1002/j.1538-7305.1979.tb02235.x
- N. Gharbi, C. Dutheillet and M. Ioualalen, Colored stochastic Petri nets for modelling and analysis of multiclass retrial systems, Mathematical and Computer Modelling 49 (2009), 1436-1448. https://doi.org/10.1016/j.mcm.2008.11.006
- A. Gomez-Corral, A bibliographical guid to the analysis of retrial queues through matrix analytic techniques, Annals of Operations Research 141 (2006), 163-191. https://doi.org/10.1007/s10479-006-5298-4
- B.S. Greenberg and R.W. Wolf, An upper bound on the performance of queues with returning customer, Journal of Applied Probbaility 24 (1987), 466-475. https://doi.org/10.1017/S0021900200031107
- S.A. Grishechkin, Multiclass batch arrival retrial queues analyzed as branching process with immigration, Queueing Systems 11 (1992), 395-418. https://doi.org/10.1007/BF01163863
- Q.M. He, H. Li, Y.Q. Zhao, Ergodicity of the BMAP/PH/s/s + K retrial queue with PH-retrial times, Queueing Systems 35 (2000), 323-347. https://doi.org/10.1023/A:1019110631467
- M.A. Johnson, M.R. Taaffe, Matching moments to phase distributions : mixture of Erlang distributions of common order, Stochastic Models 5 (1989), 711-743. https://doi.org/10.1080/15326348908807131
- J.C. Ke and F.M. Chang, Modified vacation policy for M/G/1 retrial queue with balking and feedback, Computers & Industrial Engineering 57 (2009), 433-443. https://doi.org/10.1016/j.cie.2009.01.002
- Z. Khalil, G.I. Falin and T. Yang, Some analytical results for congestion in subscriber line modules, Queueing Systems 10 (1992), 381-402. https://doi.org/10.1007/BF01193327
- J. Kim and B. Kim, A survey of retrial queueing systems, Annals of Operations Research 247 (2016), 3-36. https://doi.org/10.1007/s10479-015-2038-7
- J. Kim, J. Kim J and B. Kim, Analysis of the M/G/1 queue with discriminatory random order service policy, Performance Evaluation 68 (2011), 256-270. https://doi.org/10.1016/j.peva.2010.12.001
- V.G. Kulkarni, On queueing systems with retrials, Journal of Applied Probability 20 (1983), 380-389. https://doi.org/10.2307/3213810
- V.G. Kulkarni, Expected waiting times in a multiclass batch arrival retrial queue, Journal of Applied Probability 23 (1986), 144-154. https://doi.org/10.1017/S0021900200106345
- V.G. Kulkarni and H.M. Liang, Retrial queues revisited, In Frontiers in Queueing: Models and Applications in Science and Engineering (J.H. Dshalalow, ed.), CRC Press, Boca Raton, 19-34.
- B.K. Kummar, R. Rukmani and V. Thangaraj, An M/M/c retrial queueing system with Bernoulli vacations, Journal of Systems Science and Systems Engineering 18 (2009), 222-242. https://doi.org/10.1007/s11518-009-5106-1
- H.M. Liang, Retrial queues, Ph,D Thesis, University of North Carolina at Chapel Hill, 1991.
- H.M. Liang, Service station factors in monotonicity of retrial queues, Mathematical and Computer Models 30 (1999), 189-196. https://doi.org/10.1016/S0895-7177(99)00141-7
- H.M. Liang, V.G. Kulkarni, Monotonicity properties of single server retrial queues, Stochastic Models 9 (1993), 373-400. https://doi.org/10.1080/15326349308807271
- M. Martin and J.R. Artalejo, Analysis of an M/G/1 queue with two types of impatient units, Advances in Applied Probability 27 (1995), 840-861. https://doi.org/10.1017/S0001867800027178
- E. Morozov, A multiserver retrial queue: regenerative stability analysis, Queueing Systems 56 (2007), 157-168. https://doi.org/10.1007/s11134-007-9024-y
- M.F. Neuts, Matrix-Geometric Solutions in Stochastic Models - An Algorithmic Approach, Johns Hopkins University Press, Baltimore, 1981.
- M.F. Neuts and B.M. Rao, Numerical investigation of a multiserver retrial model, Queueing Systems 7 (1990), 169-190. https://doi.org/10.1007/BF01158473
- T. Osogami and M. Harchol-Balter, Closed form solutions for mapping general distributions to quasiminimal PH distributions, Performance Evaluation 62 (2006), 524-552.
- T. Phung-Duc and K. Kawanishi, An efficient method for performance analysis of blended call centers with retrial, Asia Pacific Journal of Operational Research 31 (2014), 1440008 (33pages). https://doi.org/10.1142/S0217595914400089
- Y.W. Shin, Monotonicity properties in various retrial queues and their applications, Queueing Systems 53 (2006), 147-157. https://doi.org/10.1007/s11134-006-6702-0
- Y.W. Shin, Fundamental matrix of transient QBD generator with finite states and level dependent transitions, Asia-Pacific Journal of Operational Research 26 (2009), 697-714. https://doi.org/10.1142/S0217595909002407
-
Y.W. Shin, Algorithmic solutions for M/M/c retrial queue with
$PH_2$ retrial times, Journal of Applied Mathematics and Informatics 29 (2011), 803-811. - Y.W. Shin, Interpolation approximation of M/G/c/K retrial queues with ordinary queues, Journal of Applied Mathematics and Informatics 30 (2012), 531-540.
- Y.W. Shin, Algorithmic approach to Markovian multi-server retrial queue with vacations, Applied Mathematics and Computations 250 (2015), 287-279. https://doi.org/10.1016/j.amc.2014.10.079
- Y.W. Shin, Stability of MAP/PH/c/K retrial queue with customer retrials and server vacations, Bulletin of the Korean Mathematical Society 53 (2016), 985-1004. https://doi.org/10.4134/BKMS.b150337
- Y.W. Shin, T.S. Choo, M/M/s queue with impatient customers and retrials, Applied Mathematical Modelling 33 (2009), 2596-2606. https://doi.org/10.1016/j.apm.2008.07.018
- Y.W. Shin and Y.C. Kim, Stochastic comparisons of Markovian retrial queues, Journal of the Korean Statistical Society 29 (2000), 473-488.
- Y.W. Shin and D.H. Moon, Approximations of retrial queu with limited number of retrials, Computers and Operations Research 37 (2010), 1262-1270. https://doi.org/10.1016/j.cor.2009.03.025
- Y.W. Shin and D.H. Moon, Approximation of M/M/c retrial queu with PH-retrial times, European Journal of Operational Research 213 (2011), 205-209. https://doi.org/10.1016/j.ejor.2011.03.024
- Y.W. Shin and D.H. Moon, Sensitivity of M/M/c retrial queu with respect to retrial times : experimental investigation, Journal of the Korean Institute of Industrial Engineers 37 (2011), 83-87. https://doi.org/10.7232/JKIIE.2011.37.2.083
- Y.W. Shin and D.H. Moon, Approximation of M/G/c retrial queue with M/PH/c retrial queue, Communications of the Korean Stistical Society 19 (2012), 169-175.
- Y.W. Shin and D.H. Moon, Approximation of M/M/s/K retrial queu with nonpersistent customers, Applied Mathematical Modelling 37 (2013), 753-761. https://doi.org/10.1016/j.apm.2012.02.029
- Y.W. Shin and D.H. Moon, On approximations for GI/G/c retrial queues, Journal of Applied Mathematics and Informatics 31 (2013), 311-325. https://doi.org/10.14317/jami.2013.311
- Y.W. Shin and D.H. Moon, Approximation of PH/PH/c retrial queu with PH-retrial times, Asia-Pacific Journal of Operational Research 31 (2014), 1440010 (21 pages). https://doi.org/10.1142/S0217595914400107
- Y.W. Shin and D.H. Moon, M/M/c retrial queue with multiclass of customers, Merhodology and Computing in Applied Probability 16 (2014), 931-949. https://doi.org/10.1007/s11009-013-9340-0
- Y.W. Shin and D.H. Moon, Approximate analysis of M/M/c retrial queue with server vacations, Journal of the Korean Society for Industrial and Applied Mathematics 19 (2015), 443-457. https://doi.org/10.12941/jksiam.2015.19.443
- S.N. Stepanov, Generalized model with repeated calls in case of extreme load, Queueing Systems 27 (1997), 131-151. https://doi.org/10.1023/A:1019110030674
- H. Tijms, A First Course in Stochastic Models, Wiley, 2003.
- W. Whitt, Approximating a point process by a renewal process, I: two basic methods, Operations Research 30 (1982), 125-147. https://doi.org/10.1287/opre.30.1.125
- R.W. Wolff, Stochastic Modeling and The Theory of Queues, New Jersey, Prentice Hall, 1989.
- X. Xu and Z.G. Zhang, Analysis of multiple-server queue with a single vacation (e, d)-policy, Performance Evaluation 63 (2006), 825-838. https://doi.org/10.1016/j.peva.2005.09.003
- T. Yang and J.G.C. Templeton, A survey on retrial queues, Queueing Systems 2 (1987), 201-233. https://doi.org/10.1007/BF01158899
- T. Yang, M.J.M. Posner, J.G.C. Templeton and H. Li, An approximation method for the M/G/1 retrial queues with general retrial times, European Journal of Operational Research 76 (1994), 552-562. https://doi.org/10.1016/0377-2217(94)90286-0