• Title/Summary/Keyword: phase type distribution of retrial time

Search Result 5, Processing Time 0.019 seconds

Approximation of M/G/c Retrial Queue with M/PH/c Retrial Queue

  • Shin, Yang-Woo;Moon, Dug-Hee
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.1
    • /
    • pp.169-175
    • /
    • 2012
  • The sensitivity of the performance measures such as the mean and the standard deviation of the queue length and the blocking probability with respect to the moments of the service time are numerically investigated. The service time distribution is fitted with phase type(PH) distribution by matching the first three moments of service time and the M/G/c retrial queue is approximated by the M/PH/c retrial queue. Approximations are compared with the simulation results.

APPROXIMATE ANALYSIS OF M/M/c RETRIAL QUEUE WITH SERVER VACATIONS

  • SHIN, YANG WOO;MOON, DUG HEE
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.19 no.4
    • /
    • pp.443-457
    • /
    • 2015
  • We consider the M/M/c/c queues in which the customers blocked to enter the service facility retry after a random amount of time and some of idle servers can leave the vacation. The vacation time and retrial time are assumed to be of phase type distribution. Approximation formulae for the distribution of the number of customers in service facility and the mean number of customers in orbit are presented. We provide an approximation for M/M/c/c queue with general retrial time and general vacation time by approximating the general distribution with phase type distribution. Some numerical results are presented.

DIMENSION REDUCTION FOR APPROXIMATION OF ADVANCED RETRIAL QUEUES : TUTORIAL AND REVIEW

  • SHIN, YANG WOO
    • Journal of applied mathematics & informatics
    • /
    • v.35 no.5_6
    • /
    • pp.623-649
    • /
    • 2017
  • Retrial queues have been widely used to model the many practical situations arising from telephone systems, telecommunication networks and call centers. An approximation method for a simple Markovian retrial queue by reducing the two dimensional problem to one dimensional problem was presented by Fredericks and Reisner in 1979. The method seems to be a promising approach to approximate the retrial queues with complex structure, but the method has not been attracted a lot of attention for about thirty years. In this paper, we exposit the method in detail and show the usefulness of the method by presenting the recent results for approximating the retrial queues with complex structure such as multi-server retrial queues with phase type distribution of retrial time, impatient customers with general persistent function and/or multiclass customers, etc.

ALGORITHMIC SOLUTION FOR M/M/c RETRIAL QUEUE WITH $PH_2$-RETRIAL TIMES

  • Shin, Yang-Woo
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.3_4
    • /
    • pp.803-811
    • /
    • 2011
  • We present an algorithmic solution for the stationary distribution of the M/M/c retrial queue in which the retrial times of each customer in orbit are of phase type distribution of order 2. The system is modeled by the level dependent quasi-birth-and-death (LDQBD) process.

STABILITY OF MAP/PH/c/K QUEUE WITH CUSTOMER RETRIALS AND SERVER VACATIONS

  • Shin, Yang Woo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.4
    • /
    • pp.985-1004
    • /
    • 2016
  • We consider the MAP/PH/c/K queue in which blocked customers retry to get service and servers may take vacations. The time interval between retrials and vacation times are of phase type (PH) distributions. Using the method of mean drift, a sufficient condition of ergodicity is provided. A condition for the system to be unstable is also given by the stochastic comparison method.