• Title/Summary/Keyword: Dimensional Optimization

Search Result 1,025, Processing Time 0.029 seconds

Aerodynamic Design Optimization of an Jet Fan using the Response Sruface Method (반응면 기법을 이용한 제트송풍기의 공력학적 수치최적설계)

  • Seo Seoung-Jin;Kim Kwang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.635-638
    • /
    • 2002
  • In this study, three-dimensional imcompressible viscous flow analysis and optimization using response surface method are presented for the design of a jet fan. Steady, imcompressible, three-dimensional Reynolds averaged Wavier-Stokes equations are used as governing equations, and standard $k-{\varepsilon}$ turbulence model is chosen as a turbulence model. Governimg equations are discretized using finite volume method. Sweep angles are used as design variables for the shape optimization of the impeller in response surface method. The experimental points which are needed to construct response surface are obtained from the D-optimal design and finally the shape of impeller Is achieved from using a numerical optimization for the response surface which is obtained from CFD.

  • PDF

Shape Optimization of Swept, Leaned, and Skewed Blades in a Transonic Axial Compressor for Enhancing Rotor Efficiency (효율 향상을 위한 축류 압축기 동익의 스윕, 린, 스큐각의 형상 최적화)

  • Jang, Choon-Man;Samad, Abdus;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.525-532
    • /
    • 2005
  • Shape optimization of a transonic axial compressor rotor operating at the design flow condition has been performed using response surface method and three-dimensional Navier-Stokes analysis. Three design variables of blade sweep. lean and skew are introduced to optimize the three-dimensional stacking line of the rotor blade. The object function of the shape optimization is selected as an adiabatic efficiency. Throughout the shape optimization of the rotor. the adiabatic efficiency is increased by reducing the tub comer and tip losses. Separation line due to the interference between a passage shock and surface boundary layer on the blade suction surface is moved downstream for the optimized blade compared to the reference one.

  • PDF

Weighted sum Pareto optimization of a three dimensional passenger vehicle suspension model using NSGA-II for ride comfort and ride safety

  • Bagheri, Mohammad Reza;Mosayebi, Masoud;Mahdian, Asghar;Keshavarzi, Ahmad
    • Smart Structures and Systems
    • /
    • v.22 no.4
    • /
    • pp.469-479
    • /
    • 2018
  • The present research study utilizes a multi-objective optimization method for Pareto optimization of an eight-degree of freedom full vehicle vibration model, adopting a non-dominated sorting genetic algorithm II (NSGA-II). In this research, a full set of ride comfort as well as ride safety parameters are considered as objective functions. These objective functions are divided in to two groups (ride comfort group and ride safety group) where the ones in one group are in conflict with those in the other. Also, in this research, a special optimizing technique and combinational method consisting of weighted sum method and Pareto optimization are applied to transform Pareto double-objective optimization to Pareto full-objective optimization which can simultaneously minimize all objectives. Using this technique, the full set of ride parameters of three dimensional vehicle model are minimizing simultaneously. In derived Pareto front, unique trade-off design points can selected which are non-dominated solutions of optimizing the weighted sum comfort parameters versus weighted sum safety parameters. The comparison of the obtained results with those reported in the literature, demonstrates the distinction and comprehensiveness of the results arrived in the present study.

The smooth topology optimization for bi-dimensional functionally graded structures using level set-based radial basis functions

  • Wonsik Jung;Thanh T. Banh;Nam G. Luu;Dongkyu Lee
    • Steel and Composite Structures
    • /
    • v.47 no.5
    • /
    • pp.569-585
    • /
    • 2023
  • This paper proposes an efficient approach for the structural topology optimization of bi-directional functionally graded structures by incorporating popular radial basis functions (RBFs) into an implicit level set (ILS) method. Compared to traditional element density-based methods, a level set (LS) description of material boundaries produces a smoother boundary description of the design. The paper develops RBF implicit modeling with multiquadric (MQ) splines, thin-plate spline (TPS), exponential spline (ES), and Gaussians (GS) to define the ILS function with high accuracy and smoothness. The optimization problem is formulated by considering RBF-based nodal densities as design variables and minimizing the compliance objective function. A LS-RBF optimization method is proposed to transform a Hamilton-Jacobi partial differential equation (PDE) into a system of coupled non-linear ordinary differential equations (ODEs) over the entire design domain using a collocation formulation of the method of lines design variables. The paper presents detailed mathematical expressions for BiDFG beams topology optimization with two different material models: continuum functionally graded (CFG) and mechanical functionally graded (MFG). Several numerical examples are presented to verify the method's efficiency, reliability, and success in accuracy, convergence speed, and insensitivity to initial designs in the topology optimization of two-dimensional (2D) structures. Overall, the paper presents a novel and efficient approach to topology optimization that can handle bi-directional functionally graded structures with complex geometries.

Finite Elements Adding and Removing Method for Two-Dimensional Shape Optimal Design

  • Lim, Kyoung-Ho;John W. Bull;Kim, Hyun-Kang
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.413-421
    • /
    • 2001
  • A simple procedure to add and remove material simultaneously along the boundary is developed to optimize the shape of a two dimensional elastic problems and to minimize the maximum von Mises stress. The results for the two dimensional infinite plate with a hole, are close to the theoretical results of an elliptical boundary and the stress concentration is reduced by half for the fillet problem. The proposed shape optimization method, when compared with existing derivative based shape optimization methods has many features such as simplicity, applicability, flexibility, computational efficiency and a much better control on stresses on the design boundary.

  • PDF

An Interference Avoidance Method Using Two Dimensional Genetic Algorithm for Multicarrier Communication Systems

  • Huynh, Chuyen Khoa;Lee, Won Cheol
    • Journal of Communications and Networks
    • /
    • v.15 no.5
    • /
    • pp.486-495
    • /
    • 2013
  • In this article, we suggest a two-dimensional genetic algorithm (GA) method that applies a cognitive radio (CR) decision engine which determines the optimal transmission parameters for multicarrier communication systems. Because a CR is capable of sensing the previous environmental communication information, CR decision engine plays the role of optimizing the individual transmission parameters. In order to obtain the allowable transmission power of multicarrier based CR system demands interference analysis a priori, for the sake of efficient optimization, a two-dimensionalGA structure is proposed in this paper which enhances the computational complexity. Combined with the fitness objective evaluation standard, we focus on two multi-objective optimization methods: The conventional GA applied with the multi-objective fitness approach and the non-dominated sorting GA with Pareto-optimal sorting fronts. After comparing the convergence performance of these algorithms, the transmission power of each subcarrier is proposed as non-interference emission with its optimal values in multicarrier based CR system.

Determination of the location of fixture elements using the strain energy (변형 에너지를 고려한 치구 위치의 선정)

  • 기동우;이건우;정진평
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.548-554
    • /
    • 1996
  • A new method to locate modular fixtures using an optimization technique is proposed. The optimal fixture arrangement is derived to minimize the elastic deformation of a workpiece. That is, a fixture arrangement is regarded better if it minimized the elastic deformation of the workpiece while fixing a workpart of course. In this approach, the workpiece is projected into two dimensional domain to simplify the 3-dimensional fixture arrangement problem into 2-dimensional one. Thus the problem is reduced to find the optimal positions of one horizontal clamp and three locators which minimize the total deformation of the workpiece and the design variables are the location of the contact points between the boundary of the workpiece and the 4-fixels. The Genetic Algorithm is used for the optimization by mapping each design variables to a gene of a chromosome. The fitness value is the total strain energy of the workpiece calculated by the fin element analysis.

  • PDF

Assessment of Optimization Methods for Design of Axial-Flow Fan (축류송풍기 설계를 위한 최적설계기법의 평가)

  • Choi, Jae-Ho;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.221-226
    • /
    • 1999
  • Three-dimensional flow analysis and numerical optimization methods are presented for the design of an axial-flow fan. Steady, Incompressible, three-dimensional Reynolds-averaged Wavier-Stokes equations are used as governing equations, and standard k-$\epsilon$ turbulence model is chosen as a turbulence model. Governing equations are discretized using finite volume method. Steepest descent method, conjugate gradient method and BFGS method are compared to determine the searching directions. Golden section method and quadratic fit-sectioning method are tested for one dimensional search. Objective function is defined as a ratio of generation rate of the turbulent kinetic energy to pressure head. Sweep angle distributions are used as design variables.

  • PDF

Shape optimization of polymer extrusion die using three-dimensional flow simulation and non-Newtonian fluid models (3차원 흐름 모사와 비뉴톤 유체모델을 이용한 고분자 압출 다이의 형상 최적화)

  • 나수연;이태용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1754-1757
    • /
    • 1997
  • Three-dimensional optimum design of coat-hanger die is performed using power-law and Carreau models. It is found that the three-dimensional optimum design algorithm shows good convergence with the non-Newtonian fludis. the nore realistic optimum design is accomplished by employing Carreau model with the three-dimensional design method. The effect of vixcosity modles is investigated by comparing the optimum manifold profiles and flow rate distributions of power-law and Carreau modles. Through the accurated viscosity representation of Carreau model, the effect of total flow rate on the optimum manifold profile is investigated.

  • PDF

Structural Design Optimization of a High Speed Machining Center Using a Simple Genetic Algorithm (금형가공센터 고속 이송체의 최적설계)

  • 최영휴;박선균;배병태;이재윤;김태형;박보선
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.74-78
    • /
    • 2001
  • In this study, a multi-step optimization technique combined with a simple genetic algorithm is introduce to the structural design optimization of a high speed machining center. In this case, the design problem is to find out the best design variables which minimize the static compliance, the dynamic compliance, and the weight of the machine structure and meet some design constraints simultaneously. Dimensional thicknesses of the thirteen structural members along the static force loop of the machine structure are adopted as design variables. The first optimization step is a static design optimization, in which the static compliance and the weight are minimized under some dimensional and safety constraints. The second step is a dynamic design optimization, where the dynamic compliance and the weight are minimized under the same constraints. After optimization, the weight of the moving body was reduced to 9.1% of the initial design respectively. Both static and dynamic compliances of the optimum design are also in the feasible range even thought they were slightly increased than before.

  • PDF