• 제목/요약/키워드: Differential geometry

검색결과 188건 처리시간 0.024초

중등 교사 양성을 위한 기하 영역의 교육과정 개발 (Development of Curricula on Geometry Related Courses for Training of Mathematics Teacher of Secondary Schools)

  • 박혜숙
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제42권4호
    • /
    • pp.503-521
    • /
    • 2003
  • In this paper, we propose programs of geometry related courses for the department of mathematics education of teacher training universities. We suggest 4 courses, ‘Geometry I’, ‘Geometry II’, ‘Differential Geometry’, ‘Topology’ as geometry related courses in Shin et. al.(2003). Among those 4 courses, we state desirable direction of curricula on 3 courses, ‘Geometry I’, ‘Geometry II’, ‘Differential Geometry’ in this paper.

  • PDF

삼각형 메쉬 상에서의 미분 연산자와 그 응용 (Differential Operators on a Triangular Mesh and Their Applications)

  • 백승엽;감동욱;이건우
    • 한국CDE학회논문집
    • /
    • 제20권1호
    • /
    • pp.44-54
    • /
    • 2015
  • Solving partial differential equations (PDEs) on a manifold setting is frequently faced problem in CAD, CAM and CAE. However, unlikely to a regular grid, solutions for those problems on a triangular mesh are not available in general, as there are no well-established intrinsic differential operators. Considering that a triangular mesh is a powerful tool for representing a highly-complicated geometry, this problem must be tackled for improving the capabilities of many geometry processing algorithms. In this paper, we introduce mathematically well-defined differential operators on a triangular mesh setup, and show some examples of their applications. Through this, it is expected that many CAD/CAM/CAE application will be benefited, as it provides a mathematically rigorous solution for a PDE problem which was not available before.

크리스토펠, 리치, 레비-치비타에 의한 19세기 중반부터 20세기 초반까지 미분기하학의 발전 (On the Development of Differential Geometry from mid 19C to early 20C by Christoffel, Ricci and Levi-Civita)

  • 원대연
    • 한국수학사학회지
    • /
    • 제28권2호
    • /
    • pp.103-115
    • /
    • 2015
  • Contemporary differential geometry owes much to the theory of connections on the bundles over manifolds. In this paper, following the work of Gauss on surfaces in 3 dimensional space and the work of Riemann on the curvature tensors on general n dimensional Riemannian manifolds, we will investigate how differential geometry had been developed from mid 19th century to early 20th century through lives and mathematical works of Christoffel, Ricci-Curbastro and Levi-Civita. Christoffel coined the Christoffel symbol and Ricci used the Christoffel symbol to define the notion of covariant derivative. Levi-Civita completed the theory of absolute differential calculus with Ricci and discovered geometric meaning of covariant derivative as parallel transport.

Earliest Intercept Geometry Guidance to Improve Mid-Course Guidance in Area Air-Defence

  • Shin, Hyo-Sang;Tahk, Min-Jea;Tsourdos, A.;White, B.A.
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제11권2호
    • /
    • pp.118-125
    • /
    • 2010
  • This paper describes a mid-course guidance strategy based on the earliest intercept geometry (EIG) guidance. An analytical solution and performance validation will be addressed for generalized mid-course guidance problems in area air-defence in order to improve reachability and performance. The EIG is generated for a wide range of possible manoeuvres of the challenging missile based on the guidance algorithm using differential geometry concepts. The main idea is that a mid-course guidance law can defend the area as long as it assures that the depending area and objects are always within the defended area defined by EIG. The velocity of Intercept Point in EIG is analytically derived to control the Intercept Geometry and the defended area. The proposed method can be applied in deciding a missile launch window and launch point for the launch phase.

SYMMETRIES OF PARTIAL DIFFERENTIAL EQUATIONS

  • Gaussier, Herve;Merker, Joel
    • 대한수학회지
    • /
    • 제40권3호
    • /
    • pp.517-561
    • /
    • 2003
  • We establish a link between the study of completely integrable systems of partial differential equations and the study of generic submanifolds in $\mathbb{C}$. Using the recent developments of Cauchy-Riemann geometry we provide the set of symmetries of such a system with a Lie group structure. Finally we determine the precise upper bound of the dimension of this Lie group for some specific systems of partial differential equations.

Nonlinear Time-Varying Control Based on Differential Geometry

  • Lee, Jong-Yong;Jung, Kye-dong;Cho, Seongsoo;Strzelecki, Michat
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제6권2호
    • /
    • pp.1-9
    • /
    • 2014
  • This paper presents a study on nonlinear time varying systems based on differential geometry. A brief introduction about controllability and involutivity will be presented. As an example, the exact feedback linearization and the approximate feedback linearization are used in order to show some application examples.

A GENERALIZATION OF DIFFERENTIAL FORMS AND ITS APPLICATION

  • Shikata, Yoshihiro;Hong, Suk-Ho
    • 대한수학회보
    • /
    • 제28권2호
    • /
    • pp.225-229
    • /
    • 1991
  • Our final purpose may be to introduce generalized differential forms on the space Map(S, M) of mappings from a manifold S into a manifold M and discuss the differential geometry of the space Map(S, M) from the point of the generalized forms. Here we take a subspace X of the space Map(S,M) and we introduce the generalized differential forms on X, taking the dual to the chain space with the flat norm. This method of construction allows us to discuss a sufficient condition for a subspace Y of X to admit the generalized differential forms and the natural integration as the dual operation.

  • PDF

Parameter Estimation for a Hilbert Space-valued Stochastic Differential Equation ?$\pm$

  • Kim, Yoon-Tae;Park, Hyun-Suk
    • Journal of the Korean Statistical Society
    • /
    • 제31권3호
    • /
    • pp.329-342
    • /
    • 2002
  • We deal with asymptotic properties of Maximum Likelihood Estimator(MLE) for the parameters appearing in a Hilbert space-valued Stochastic Differential Equation(SDE) and a Stochastic Partial Differential Equation(SPDE). In paractice, the available data are only the finite dimensional projections to the solution of the equation. Using these data we obtain MLE and consider the asymptotic properties as the dimension of projections increases. In particular we explore a relationship between the conditions for the solution and asymptotic properties of MLE.