• Title/Summary/Keyword: Differential Pulse Voltammetry

Search Result 121, Processing Time 0.021 seconds

The Modified Electrode by PEDOP with MWCNTs-Palladium Nanoparticles for the Determination of hydroquinone and Catechol

  • Naranchimeg, Orogzodmaa;Kim, Seul-Ki;Jeon, Seung-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2771-2775
    • /
    • 2011
  • Poly-ethylenedioxypyrrole (PEDOP) coated thiolated multiwall carbon nanotubes palladium nanoparticles (MWCNTs-Pd) modified glassy carbon electrode (GCE) [PEDOP/MWCNTs-Pd/GCE] for the determination of hydroquinone (HQ) and it’s isomer catechol (CA) were synthesized and compared with bare GCE and thiolated multiwall carbon nanotubes (MWCNTs-SH/GCE). The modification could be made by simple processes on a GCE with MWCNTs-Pd covered by PEDOP in a 0.05 M tetrabutylammonium perchlorate (TBAP)/MeCN solution system. A well-defined peak potential evaluation of the oxidation of hydroquinone to quinone at 0.05 V (vs. Ag/AgCl), and electrochemical reduction back to hydroquinone were found by cyclic voltammetry (CV) in phosphate buffered saline (PBS) at pH 7.4. Peak current values increased linearly with increasing hydroquinone contents. The peak separation between the anodic and cathodic peaks at the PEDOP/MWCNTs-Pd/GCE was ${\Delta}Ep$ = 40 mV for HQ and ${\Delta}Ep$ = 70 mV for CA, resulting in a higher electron transfer rate. Moreover, good reproducibility, excellent storage stability, a wide linear range (0.1 ${\mu}M$ - 5 mM for HQ and 0.01 ${\mu}M$ - 6 mM for CA), and low detection limits ($2.9{\times}10^{-8}$ M for HQ and $2.6{\times}10^{-8}$ M for CA; S/N = 3) were determined using differential pulse voltammetry (DPV) and amperometric responses; this makes it a promising candidate as a sensor for determination of HQ and CA.

Properties of Mononuclear and Binuclear Cu(II) Schiff Base Complexes and Oxidation of Ascorbic Acid (단핵 및 이핵성 시프염기리간드 Cu(II) 착물의 특성과 Ascorbic Acid에 대한 산화반응)

  • Kim, Sun Deuk;Lee, Young Seuk;Park, Jung Eun
    • Analytical Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.558-564
    • /
    • 2000
  • Mononuclear schiff base ligand N,N'-bissalicylidene-1,2-phenylenediamine(BSPD) and binuclear schiff base ligands N,N',N',N'''-tetrasalicylidene-3,3',4,4'-tetraaminodiphenyl-methane (TSTM), N,N',N'',N'''-tetrasalicylidene-3,3'-diaminobenzidine (TSDB) have been synthesized. Proton dissociation constants of the ligands were determined by potentiometric method. The synthesized ligands and complexes formed with Cu(II) ion. These complexes were investigated by cyclic voltammetry and differential pulse voltammetry. The results revealed two step diffusion controlled redox process. The mononuclear complex Cu(II)-BSPD and binuclear complexes $Cu(II)_2$-TSDB and $Cu(II)_2$-TSTM were used in the oxidation reaction of ascorbic acid. The reaction rates were in the order of $Cu(II)_2$-TSTM>$Cu(II)_2$-TSDB>Cu(II)-BSPD, indicating that the binuclear $Cu(II)_2$-TSTM complex had the fastest values.

  • PDF

Electroanalytical Measurement of TEDA (Triethylenediamine) in the Masks of War

  • Ariani, Zahra;Honarmand, Ebrahim;Mostaanzadeh, Hossein;Motaghedifard, Mohammadhassan;Behpour, Mohsen
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.43-52
    • /
    • 2017
  • In this paper, for the first time, the electroanalytical study of Triethylenediamine, TEDA was done on a typically graphene modified carbon paste electrode (Gr/CPE) in pH=10.5 of phosphate buffer solutions (PBS). The surface morphology of the bare and modified electrodes was characterized by scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The electro-oxidation of TEDA was investigated at the surface of modified electrode. The results revealed that the oxidation peak current of TEDA at the surface of Gr/CPE is 2.70 times than that shown at bare-CPE. A linear calibration plot was observed in the range of 1.0 to 202.0 ppm. In this way, the detection limit was found to be 0.18 ppm. The method was then successfully applied to determination of TEDA in aqueous samples obtained from two kinds of activated carbon from the masks of war. On the other hand, density functional theory (DFT) method at B3LYP/6-311++G** level of theory and a conductor-like Polarizable Continuum Model (CPCM) was used to calculate the $pK_a$ values of TEDA. The energies of lowest unoccupied molecular orbital ($E_{LUMO}$) and highest occupied molecular orbital ($E_{HOMO}$), gap energy (${\Delta}E$) and some thermodynamic parameters such as Gibbs free energy of TEDA and its conjugate acid ($HT^+$) were calculated. The results of calculated $pK_a$ were found to be in good agreement with the experimental values.

Adsorptive Stripping Voltammetric Determination of Ruthenium (흡착 벗김법에 의한 루테늄 정량)

  • Hong, Tae-Kee;Kwon, Young-Soon;Czae, Myung-Zoon
    • Analytical Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.119-125
    • /
    • 1997
  • A stripping voltammetric procedure for determining ruthenium was developed, based on the adsorptive accumulation of ruthenium in the presence of hydrazine in acidic acetate buffer. After preconcentration of ruthenium compelex and reduction, the ruthenium-catalyzed hydrogen current at -0.84V was measured by differential pulse voltammetry. Optimal experimental conditions were found to be a stirred acetate buffer solution(pH 2.0) containing 0.01M acetate and 0.01M hydrazine, accumulation potential of -0.76V, and a scan rate of 5mV/s. The detection limit was $2{\times}10^{-9}M$ for a 7 min accumulation period. The possible interferences by other platinum group metals were also investigated.

  • PDF

Simultaneous Determination of Ranitidine and Metronidazole at Poly(thionine) Modified Anodized Glassy Carbon Electrode

  • Rahman, Md. Mahbubur;Li, Xiao-Bo;Jeon, Young-Deok;Lee, Ho-Joon;Lee, Soo Jae;Lee, Jae-Joon
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.90-94
    • /
    • 2012
  • A simple and sensitive electrochemical sensor for simultaneous and quantitative detection of ranitidine (RT) and metronidazole (MT) was developed, based on a poly(thionine)-modified anodized glassy carbon electrode (PTH/GCE). The modified electrode showed the excellent electrocatalytic activity towards the reduction of both RT and MT in 0.1M phosphate buffer solution (PBS, pH 7.0). The peak-to-peak separations (${\Delta}E_p$) for the simultaneous detection of RT and MT between the two reduction waves in CV and DPV were increased significantly from ca. 100 mV at anodized GCE, to ca. 550 mV at the PTH/GCE. The reduction peak currents of RT and MT were linear over the range from 35 to $500{\mu}M$ in the presence of 200 and $150{\mu}M$ of RT and MT, respectively. The sensor showed the sensitivity of 0.58 and $0.78{\mu}A/cm^2/{\mu}M$ with the detection limits (S/N = 3) of 1.5 and $0.96{\mu}M$, respectively for RT and MT.

Cathodic Stripping Voltammetric Study of Tin(Ⅱ)-Cupferron Complex (Tin(Ⅱ)-Cupferron 착물에 대한 음극벗김전압전류법적 연구)

  • Sohn, Se Chul;Seo, Moo Yul;Jee, kwang Yong;Choi, In kyu
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.1
    • /
    • pp.23-28
    • /
    • 1995
  • Differential-pulse cathodic stripping voltammetry was applied to the Sn(II)-cupferron complex in 0.1 M acetate buffer solution (pH 4.20). Effects of solution pH, ligand concentration, accumulation potential, and accumulation time on the reduction peak current for the adsorptive complex of Sn(II)-cupferron were investigated. Interferences by other metal cations that affected on reduction peak current were also discussed. The detection limit was 3.1${\times}$10-9 M (0.37 ppb) of Sn(II) with 60 seconds accumulation time. The relative standard deviation (n=8) for 5${\times}$10-8 M Sn(II) was 3.0%.

  • PDF

Electrochemical Reduction of Methylene Blue and the Effect of Surfactants and Poly-Electrolytes (Methylene Blue의 전기화학적 환원과 계면활성제 및 고분자 전해질의 영향)

  • Kim, Il-Kwang;Jeong, Seung-Il;Chun, Hyun-Ja
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.1
    • /
    • pp.57-65
    • /
    • 1995
  • The electrochemical reduction of methylene blue (MB) in 1.0${\times}$10-2 M KNO3 aqueous solution was investigated by direct current (DC), differential pulse (DP) polarography, cyclic voltammetry (CV) and controlled potential coulometry (CPC). The electrode reduction of melthylene blue was processed CE reaction mechanism by two electrons transfer at the first reversible wave (- 0.18 volts vs. Ag/AgCl). MB was strongly adsorbed on the stationary mercury electrode and the reduction product of conptrolled potential electrolysis was rapidly auto-oxidized in air to the original methylene blue. Upon the basis of interpretation of cyclic voltammogram with pH change, possible CE electrode reaction mechanism was suggested.

  • PDF

Trace Mercury Determination by Differential Pulse Anodic Stripping Voltammetry Using Polythiophene-Quinoline/Glassy Carbon Modified Electrode

  • Yoo, Kwang-Sik;Woo, Sang-Beom;Jyoung, Jy-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.1
    • /
    • pp.27-31
    • /
    • 2003
  • A Polythiophene-quinoline/glassy carbon (PTQ/GC) modified electrode was developed for the determination of trace mercury in industrial waste water, natural water, soil, and other media. The electrode was prepared by the cyclic voltammetric polymerization of thiophene and quinoline on glassy carbon (GC) electrode by the potential application from -0.6 V to +2.0 V (50 mV/sec) in a solution of 0.1 M thiophene, quinoline and tetrabutyl ammonium perchlorate (TBAP) in acetonitrile. Optimum thickness of the polymer membrane on the GC electrode was obtained with 20 repeated potential cyclings. The redox behavior of Cu(Ⅱ) and Hg(Ⅱ) were almost identical on this electrode. The addition of 4-(2-pyridylazo)resorcinol (PAR) to the solution containing Cu(Ⅱ) and Hg(Ⅱ) allowed the separation of the components due to the formation of the Cu(Ⅱ)-PAR complex reduced at -0.8V, which was different from the Hg(Ⅱ) reduced at -0.5 V on a saturated calomel electrode (SCE). The calibration graph of Hg(Ⅱ) shows good linear relationship with the correlation factor of 0.9995 and the concentration gradient of 0.33 ㎂/㎠/ppb down to 0.4 ppb Hg. The method developed was successfully applied to the determination of mercury in samples such as river, waste water, and sea water.

Determination of Mercury(II) Using Nafion-EDTA-Modified Glassy Carbon Electrodes (Nafion-EDTA가 수식된 유리탄소전극을 이용한 수은(II)의 측정)

  • 정근호;박찬주;박율희;이지영
    • Journal of Environmental Health Sciences
    • /
    • v.26 no.4
    • /
    • pp.110-114
    • /
    • 2000
  • Determination of mercury(II) using Nafion-EDTA-modified glassy carbon electrodes is proposed. it is based on the chemical reactivity of an immobilized modifier, Nafion-EDTA. Differential pulse voltammetry is employed, and the oxidation of complexes, at +0.43V vs. Ag/AgCl, is observed. For a 5-min preconcentration period, a linear calibration curve is obtained for mercury(II) concentrations ranging from 1.0$\times$ 10$^{-8}$ to 1.0$\times$10$^{-6}$ M. Further, when an approximate amount of copper(II) is added to the test solution, We demonstrate that at a preconcentration time of 5 min the Nafion-EDTA-modified glassy carbon electrode has a dynamic range of 2 orders of magnitude(from 10$^{-10}$ to 10$^{-8}$ M) and the detection limit is as low as 0.5$\times$ 10$^{-10}$ M(0.01 ppb). This method is applied to the determination of mercury(II) in sea water(4.0$\times$10$^{-10}$ M, 0.08ppb). The result agrees satisfactorily with the value(below 0.1 ppb) measured by using ICP/MS.

  • PDF

Electrochemical Behavior of Mordant Red 19 and its Complexes with Light Lanthanides

  • Sang Kwon Lee;Taek Dong Chung;Song-Ju Lee;Ki-Hyung Chjo;Young Gu Ha;Ki-Won Cha;Hasuck Kim
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.5
    • /
    • pp.567-574
    • /
    • 1993
  • Mordant Red 19(MR19) is reduced at mercury electrode at -0.67 V vs. Ag/AgCl with two electrons per molecule in pH 9.2 buffer by differential pulse polarography and linear sweep voltammetry. The peak potential is dependent on the pH of solution. The exhaustive electrolysis, however, gives 4 electrons per molecule because of the disproportionation of the unstable hydrazo intermediate. The electrochemical reduction of lanthanide-MR19 complexes is observed at more cathodic potential than that of free ligand. The difference in peak potentials between complex and free ligand varies from 75 mV for $La^{3+}$ to 165 mV for $Tb^{3+}$ and increases with increasing the atomic number of lanthanide. The electrochemical reduction of lanthanide complexes with MR19 is due to the reduction of ligand itself, and it can be potentially useful as an indirect method for the determination of lanthanides. The shape of i-E curves and the scan rate dependence indicates the presence of adsorption and the adsorption was confirmed by potential double-step chronocoulometry and the effect of standing time. Also the surface excess of the adsorbed species and diffusion coefficients are determined. The composition of the complex is determined to be 1 : 2 by spectrophotometric and electrochemical methods.