DOI QR코드

DOI QR Code

Electroanalytical Measurement of TEDA (Triethylenediamine) in the Masks of War

  • Received : 2016.12.05
  • Accepted : 2017.01.12
  • Published : 2017.03.31

Abstract

In this paper, for the first time, the electroanalytical study of Triethylenediamine, TEDA was done on a typically graphene modified carbon paste electrode (Gr/CPE) in pH=10.5 of phosphate buffer solutions (PBS). The surface morphology of the bare and modified electrodes was characterized by scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The electro-oxidation of TEDA was investigated at the surface of modified electrode. The results revealed that the oxidation peak current of TEDA at the surface of Gr/CPE is 2.70 times than that shown at bare-CPE. A linear calibration plot was observed in the range of 1.0 to 202.0 ppm. In this way, the detection limit was found to be 0.18 ppm. The method was then successfully applied to determination of TEDA in aqueous samples obtained from two kinds of activated carbon from the masks of war. On the other hand, density functional theory (DFT) method at B3LYP/6-311++G** level of theory and a conductor-like Polarizable Continuum Model (CPCM) was used to calculate the $pK_a$ values of TEDA. The energies of lowest unoccupied molecular orbital ($E_{LUMO}$) and highest occupied molecular orbital ($E_{HOMO}$), gap energy (${\Delta}E$) and some thermodynamic parameters such as Gibbs free energy of TEDA and its conjugate acid ($HT^+$) were calculated. The results of calculated $pK_a$ were found to be in good agreement with the experimental values.

Keywords

References

  1. K.R. Ratinac, W. Yang, J.J. Gooding, P. Thordarson, F. Braet, Electroanalysis., 2011, 23, 803-826. https://doi.org/10.1002/elan.201000545
  2. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov., Science 2004, 306(5696), 666-669. https://doi.org/10.1126/science.1102896
  3. Y. Shao, J. Wang, H. Wu, J. Liu, I.A. Aksay, Y. Lin, Electroanalysis., 2010, 22(10), 1027-1036. https://doi.org/10.1002/elan.200900571
  4. A. K. Geim, K. S. Novoselov, Nat. Mater., 2007, 6(3), 183-191. https://doi.org/10.1038/nmat1849
  5. X. L. Li, G. Y. Zhang, X. D. Bai, X. M. Sun, X. R. Wang, E. Wang, H. J. Dai, Nat. Nanotechnol. 2008, 3(9), 538-542. https://doi.org/10.1038/nnano.2008.210
  6. F. Valentini, A. Amine, S. Orlanducci, M.L. Terranova, G. Palleschi, Anal. Chem., 2003, 75(20), 5413-5421. https://doi.org/10.1021/ac0300237
  7. M. Mazloum-Ardakani, Z. Taleat, H. Beitollahi, M. Salavati- Niasari, B. B. F. Mirjalili, N. Taghavinia, J. Electroanal. Chem., 2008, 624(1), 73-78. https://doi.org/10.1016/j.jelechem.2008.07.027
  8. Zhang. Y, Liu. Y. He, J, Pang. P, Gao. Y, & Hu. Q, Electroanalysis, 2013, 25(5), 1230-1236. https://doi.org/10.1002/elan.201200587
  9. D. Zheng, S.K. Vashist, M. M. Dykas, S. Saha, K. Al-Rubeaan, E. Lam, John H. T. Luong, F. S. Sheu, Materials., 2013, 6(3), 1011-1027. https://doi.org/10.3390/ma6031011
  10. N. Qiao, J. Zheng, Microchim. Acta., 2012, 177(1-2), 103-109. https://doi.org/10.1007/s00604-011-0756-3
  11. FOOTE, C. S. In Singlet Oxygen (HH Wasserman and RW Murray, Eds.). Academic Press, New York, 1979, 139-176.
  12. R.V. Trebra, T.H. Koch, Chemical Physics Letters., 1982, 93(4), 315-317. https://doi.org/10.1016/0009-2614(82)83699-3
  13. J.L. Pickett, M. Naderi, M.J. Chinn, D.R. Brown, Separation Science and Technology., 2002, 37(5), 1079-1093. https://doi.org/10.1081/SS-120002242
  14. B. Andersson, K. Andersson, Applied Occupational and Environmental Hygiene., 1991, 6(1), 40-43. https://doi.org/10.1080/1047322X.1991.10387824
  15. Honarmand. E, Motaghedifard M. H, Ghamari, RSC Advances, 2014, 4(67), 35511-35521. https://doi.org/10.1039/C4RA02712D
  16. L.S.T. Alamo, T. Tangkuaram, S. Satienperakul, Talanta., 2010, 81, 1793-1793. https://doi.org/10.1016/j.talanta.2010.03.043
  17. L. Zheng, J.F. Song, Anal. Biochem., 2009, 391(1), 56-63. https://doi.org/10.1016/j.ab.2009.05.002
  18. M.H. Motaghedifard, M. Behpour, S.M. Ghoreishi, E. Honarmand, Russ. J. Electrochem, 2016, 52(5), 477-487. https://doi.org/10.1134/S1023193516050098
  19. Gaussian 03, Revision C.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004.
  20. Gauss View, Version 3.0, Gaussian, Inc., Pittsburgh, PA, (2003).
  21. V. Barone, M. Cossi, J. Phys. Chem. A., 1998, 102(11), 1995-2001. https://doi.org/10.1021/jp9716997
  22. A. Bonanni, A. H. Loo, M. Pumera, Trend. Anal. Chem., 2012, 37, 12-21. https://doi.org/10.1016/j.trac.2012.02.011
  23. H. Bagheri, A. Afkhami, H. Khoshsafar, M. Rezaei, Shirzadmehr, A. Sens. Actuators. B., 2013, 186, 451-460. https://doi.org/10.1016/j.snb.2013.06.051
  24. M. Behpour, E. Honarmand, S.M. Ghoreishi, Bull. Kor. Chem. Soc., 2010, 31(4), 845-849. https://doi.org/10.5012/bkcs.2010.31.04.845
  25. E. Honarmand, M.H. Motaghedifard, M. Hadi, H. Mostaanzadeh, J. Molecul. Liquid., 2016, 216, 429-439. https://doi.org/10.1016/j.molliq.2015.12.094
  26. L. Benoit, D. Lefebvre, M. Frechette, Canadian. J. Chem., 1987, 65(5), 996-1001. https://doi.org/10.1139/v87-170
  27. D. Xing, X. Tan, X. Chen, Y. Bu, J. Phys. Chem. A., 2008, 112(32), 7418-7425. https://doi.org/10.1021/jp800256v