DOI QR코드

DOI QR Code

Electrolyte Addition for Enhanced Wastewater Treatment by Electrolysis using Cu Electrode

  • Kim, Woo-Yeol (Department of Environmental Engineering, Konkuk University) ;
  • Yun, Chan-Young (Department of Environmental Engineering, Konkuk University) ;
  • Son, Dong-Jin (Department of Advanced Technology Fusion, Konkuk University) ;
  • Chang, Duk (Department of Environmental Engineering, Konkuk University) ;
  • Kim, Dae-Gun (Materials & Membranes Co., Ltd.) ;
  • Hong, Ki-Ho (Division of Interdisciplinary Studies, Konkuk University)
  • Received : 2016.10.11
  • Accepted : 2017.01.03
  • Published : 2017.03.31

Abstract

In this study, the effect of electrolyte addition on the removal of organics and nutrients in electrochemical wastewater using a copper electrode, and the characteristics of the by-product of electrolysis were investigated. The removal of organics increased significantly as shorter reaction times upon the addition of chloride ion, and most of the electrolysis reaction was completed within 20 min. The reaction rate gradually increased in proportion to the $Cl^-$/COD ratio, whereas the highest removed mass of organic matter per mass of added electrolyte was observed at a $Cl^-$/COD ratio of 1. After the addition of electrolyte, significant removal of ammoniacal nitrogen was observed as a result of the enhanced generation of oxidizers such as hypochlorite. Excellent phosphorus removal was also achieved in a very short reaction time (within 2 min) by electro-coagulation. As the electrolysis progressed, the amount of by-product increased gradually, whereas a decrease of sludge volume index was observed after the addition of electrolyte. This indicated that the settling performance of the by-products was better, and their removal would be easily achieved.

Keywords

References

  1. G. Tchobanoglous, F.L. Burton and H.D. Stensel, Wastewater Engineering; Treatment and Reuse, 4th ed., McGaw Hill, (2004) 1-3.
  2. F. Ozyonar and B. Karagozoglu, J. Environ. Stud., 2011, 20, 173-179.
  3. M. Kobya, H. Hiz, E. Senturk, C. Aydiner and E. Demirbas, Desalination, 2006, 190(1), 201-211. https://doi.org/10.1016/j.desal.2005.10.006
  4. D. Rajkumar, B.J. Song and J.G. Kim, Dyes Pigment., 2007, 72(1), 1-7. https://doi.org/10.1016/j.dyepig.2005.07.015
  5. B.K. Korbahti, K. Artut, C. Gecgel and A. Ozer, Chem. Eng. J., 2011, 173(3), 677-688. https://doi.org/10.1016/j.cej.2011.02.018
  6. S. Aoudj, A. Khelifa, N. Drouiche, M. Hecini and H. Hamitouche, Chem. Eng. Process., 2010, 49(11), 1176-1182. https://doi.org/10.1016/j.cep.2010.08.019
  7. U.T. Un, A.S. Koparal and U.B. Ogutveren, J. Environ. Manage., 2006, 90, 428-433.
  8. B.K. Korbahti and K. Artut, Desalination, 2010, 258(1), 219-228. https://doi.org/10.1016/j.desal.2010.03.008
  9. C.J. Israilides, A.G. Cltssides, V.N. Mourafeti and G. Karvouni, Bioresource Technol., 1997, 61(2), 163-170. https://doi.org/10.1016/S0960-8524(97)00023-0
  10. F. Janpoor, A. Torabian and V. Khatibikamal, J. Chem. Technol. Biot., 2011, 86(8), 1113-1120. https://doi.org/10.1002/jctb.2625
  11. S. Sostar-Turk, I. Petrinic and M. Simonic, Resour. Conserv. Recy., 2005, 44(2), 185-196. https://doi.org/10.1016/j.resconrec.2004.11.002
  12. C.T. Wang, W.L. Chou and Y.M. Kuo, J. Hazard. Mater., 2009, 164(1), 81-86. https://doi.org/10.1016/j.jhazmat.2008.07.122
  13. M. Miyata, I. Ihara, G. Yoshid, K. Toyod and K. Umetsu, Water Sci. Technol., 2011, 63(3), 456-461. https://doi.org/10.2166/wst.2011.243
  14. K.J. Chae, S.K. Yim, K.H. Choi, S.K. Kim and W.K. Park, Water Sci. Technol., 2004, 49(5-6), 427-434. https://doi.org/10.2166/wst.2004.0784
  15. R. Laridi1, P. Drogui, H. Benmoussa, J.F. Blais and J.C. Auclair, J. Environ. Eng., 2005, 131(9), 1302-1310. https://doi.org/10.1061/(ASCE)0733-9372(2005)131:9(1302)
  16. Y. Deng and J.D. Englehardt, Waste Manage., 2007, 27(3), 380-388. https://doi.org/10.1016/j.wasman.2006.02.004
  17. R. Cossu, A.M. Polcaro. M.C. Lavagnolo, M. Mascia and S. Palmas, Environ. Sci. Technol., 1998, 32(22), 3570-3573. https://doi.org/10.1021/es971094o
  18. P.B. Moraes and R. Bertazzoli, Chemosphere, 2005, 58(1), 41-46. https://doi.org/10.1016/j.chemosphere.2004.09.026
  19. U. Kurt, M.T. Gonullu, F. Ilhan and K. Varinca, Environ. Eng. Sci., 2008, 25(2), 153-162. https://doi.org/10.1089/ees.2006.0132
  20. A.G. Vlyssides, P.K. Karlis, N. Rori and A.A. Zorpas, J. Hazard. Mater., 2002, 95(1), 215-226. https://doi.org/10.1016/S0304-3894(02)00143-7
  21. G. Chen, Sep. Purif. Technol., 2004, 38(1), 11-41. https://doi.org/10.1016/j.seppur.2003.10.006
  22. J. Jeong and J. Lee, Sep. Purif. Technol., 2012, 84, 35-40. https://doi.org/10.1016/j.seppur.2011.09.033
  23. M. Panizza, A. Kapalka and C. Comninellis, Electrochim. Acta, 2008, 53(5), 2289-2295. https://doi.org/10.1016/j.electacta.2007.09.044
  24. J. Chen, H. Shi and J. Lu, J. Appl. Electrochem., 2007, 37(10), 1137-1144. https://doi.org/10.1007/s10800-007-9373-6
  25. K.H. Hong, D. Chang, H.S. Bae, Y. Sunwoo, J.H. Kim and D.G. Kim, Int. J. Electrochem. Sci., 2013, 8, 8557-8571.
  26. J.M. Montgomery, Water Treatment Principles and Design, John Wiley & Sons, (1985) 393-402.
  27. K.H. Hong, W.Y. Kim, D.J. Son, C.Y. Yun, P.Q. Sun, D. Chang, H.S. Bae, J.H. Kim, Y. Sunwoo and D.G. Kim, Int. J. Electrochem. Sci., 2013, 8, 12741-12756.
  28. D.G. Kim, W.Y. Kim, C.Y. Yun, D.J. Son, D. Chang, H.S. Bae, Y.H. Lee, Y. Sunwoo and K.H. Hong, Int. J. Electrochem. Sci., 2013, 8, 9835-9850.
  29. C. Comninellis and A. Nerini, J. Appl. Electrochem., 1995, 25(1), 23-28. https://doi.org/10.1007/BF00251260
  30. J.H. Cho, J.E. Lee and C.S. Ra, J. Hazard. Mater., 2010, 180(1), 535-541. https://doi.org/10.1016/j.jhazmat.2010.04.067
  31. H.G. Leu, S.H. Lin and T.M. Lin, J. Environ. Sci. Health A, 1998, 33(4), 681-699. https://doi.org/10.1080/10934529809376755
  32. S.H. Lin and C.L. Wu, J. Environ. Sci. Health A, 1997, 32(8), 2125-2138.
  33. L.C. Chiang, J.E. Chang and T.C. Wen, J. Environ. Sci. Health A, 1995, 30(4), 753-771.
  34. L.C. Chiang, J.E. Chang and T.C. Wen, Water Res., 1995, 29(2), 671-678. https://doi.org/10.1016/0043-1354(94)00146-X
  35. A.G. Vlyssides and C.J. Israilides, J. Environ. Sci. Health A, 1998, 33(5), 847-862. https://doi.org/10.1080/10934529809376765
  36. S.I. Abou-Elela, M.A. El-Khateeb, M.E. Fawzy and W. Abdel-Halim, Desalin. Water Treat., 2013, 51(40-42), 7490-7498. https://doi.org/10.1080/19443994.2013.775669
  37. S.C. Ayaz, L. Akca, O. Aktas, N. Findik and I. Ozturk, Desalin. Water. Treat., 2012, 46(1-3), 60-67. https://doi.org/10.1080/19443994.2012.677504
  38. M. Coma, M. Verawaty, M. Pijuan, Z. Yuan and P.L. Bond, Bioresour. Technol., 2012, 103(1), 101-108. https://doi.org/10.1016/j.biortech.2011.10.014
  39. H. Fernandes, M.K. Jungles, H. Hoffmann, R.V. Antonio and R.H. Costa, Bioresour. Technol., 2013, 132, 262-268. https://doi.org/10.1016/j.biortech.2013.01.027
  40. Y. Gao, Y. Peng, J. Zhang, S. Wang, J. Guo and L. Ye, Bioresour. Technol., 2011, 102(5), 4091-4097. https://doi.org/10.1016/j.biortech.2010.12.051
  41. D. Kim, K.Y. Kim, H.D. Ryu, K.K. Min and S.I. Lee, Bioresour. Technol., 2009, 100(13), 3180-3184. https://doi.org/10.1016/j.biortech.2009.01.062
  42. APHA, AWWA and WEF, Standard methods for the examination of water and waste-water, 22nd ed., APHA, (2012).
  43. C.R. Costa and P. Olivi, Electrochim. Acta, 2009, 54(7), 2046-2052. https://doi.org/10.1016/j.electacta.2008.08.033
  44. W.M. Haynes, CRC handbook of chemistry and physics, 96th ed., CRC Press, (2015) 4-133.
  45. L. Li and Y. Liu, J. Hazard. Mater., 2009, 161(2), 1010-1016. https://doi.org/10.1016/j.jhazmat.2008.04.047