DOI QR코드

DOI QR Code

Simultaneous Determination of Ranitidine and Metronidazole at Poly(thionine) Modified Anodized Glassy Carbon Electrode

  • Rahman, Md. Mahbubur (Department of Advanced Technology Fusion, Konkuk University) ;
  • Li, Xiao-Bo (Department of Applied Chemistry, Konkuk University) ;
  • Jeon, Young-Deok (Department of Applied Chemistry, Konkuk University) ;
  • Lee, Ho-Joon (Department of Applied Chemistry, Konkuk University) ;
  • Lee, Soo Jae (Department of Applied Chemistry, Konkuk University) ;
  • Lee, Jae-Joon (Department of Advanced Technology Fusion, Konkuk University)
  • Received : 2012.06.09
  • Accepted : 2012.06.25
  • Published : 2012.06.30

Abstract

A simple and sensitive electrochemical sensor for simultaneous and quantitative detection of ranitidine (RT) and metronidazole (MT) was developed, based on a poly(thionine)-modified anodized glassy carbon electrode (PTH/GCE). The modified electrode showed the excellent electrocatalytic activity towards the reduction of both RT and MT in 0.1M phosphate buffer solution (PBS, pH 7.0). The peak-to-peak separations (${\Delta}E_p$) for the simultaneous detection of RT and MT between the two reduction waves in CV and DPV were increased significantly from ca. 100 mV at anodized GCE, to ca. 550 mV at the PTH/GCE. The reduction peak currents of RT and MT were linear over the range from 35 to $500{\mu}M$ in the presence of 200 and $150{\mu}M$ of RT and MT, respectively. The sensor showed the sensitivity of 0.58 and $0.78{\mu}A/cm^2/{\mu}M$ with the detection limits (S/N = 3) of 1.5 and $0.96{\mu}M$, respectively for RT and MT.

Keywords

References

  1. A. Salimi, M. Izadi, R. Hallaj and M. Rashidi, Electroanalysis 19, 1668 (2007). https://doi.org/10.1002/elan.200703911
  2. T. G. do Nascimento, E. de Jesus Oliveira and R. O. Macedo, J. Pharmaceut. Biomed. Anal. 37, 777 (2005). https://doi.org/10.1016/j.jpba.2004.11.042
  3. K. C. Lamp, C. D. Freeman, N. E. Klutmam and M. K. Lacy, Clin. Pharmacokinet. 36, 353 (1999). https://doi.org/10.2165/00003088-199936050-00004
  4. P. G. Farup, J. Tholfsen, S. Wetternus, R. Torp, O. Hoie and O. J. Lange, Scand. J. Gastroenterol. 37, 1374 (2002). https://doi.org/10.1080/003655202762671233
  5. E. Vega and N. Sola, J. Pharm. Biomed. Anal. 25, 523 (2001) https://doi.org/10.1016/S0731-7085(00)00596-3
  6. S. Kalil, S. A. Ibrahim, F. I. Zedan and M. S. Abd-Elmonem, Chem. Anal. (Warsaw) 50, 897 (2005).
  7. Y. M. Issa, S. B. Badawy and A. A. Mutair, Anal. Sci. 21, 1443 (2005). https://doi.org/10.2116/analsci.21.1443
  8. C. L. Erroz, P. Vinas, N. Campillo and M. H. Cordoba, Analyst 121, 1043 (1996). https://doi.org/10.1039/an9962101043
  9. E. Dreassi, G. Ceramelli, P. Corti, P. L. Perruccio and S. Lonardi, Analyst 121, 219 (1996). https://doi.org/10.1039/an9962100219
  10. A. J. S. Ahammad, S. Sarker, M. A. Rahman and J.-J. Lee, Electroanalysis 22, 694 (2010). https://doi.org/10.1002/elan.200900449
  11. P. N. Bartlett, E. Ghoneim, G. El-Hefnawy and I. El- Hallag, Talanta 66, 869 ( 2005). https://doi.org/10.1016/j.talanta.2004.12.048
  12. A. J. S.Ahammad, M. M. Rahman, G.-R. Xu, S. Kim and J.-J. Lee, Electrochimica Acta 56, 5266 (2011). https://doi.org/10.1016/j.electacta.2011.03.004
  13. M. M. Rahman, A. J. S. Ahammad, J.-H. Jin, S. J. Ahn and J.-J. Lee, Sensors 10, 4855 (2010). https://doi.org/10.3390/s100504855
  14. Y. Yuan, A. J. S. Ahammad, G.-R. Xu, S. Kim and J.-J. Lee, Bull. Korean Chem. Soc. 29, 1883 (2008). https://doi.org/10.5012/bkcs.2008.29.10.1883
  15. S. Lu, K. Wu, X. Dang and S. Hu, Talanta 63, 653 (2004). https://doi.org/10.1016/j.talanta.2003.12.005
  16. P. R. Roy, T. Okajima and T. Ohsaka, J. Electroanal. Chem. 561, 75 (2004). https://doi.org/10.1016/j.jelechem.2003.07.003

Cited by

  1. Electrochemical DNA Hybridization Sensors Based on Conducting Polymers vol.15, pp.12, 2015, https://doi.org/10.3390/s150203801
  2. A cholesterol biosensor based on a bi-enzyme immobilized on conducting poly(thionine) film vol.202, 2014, https://doi.org/10.1016/j.snb.2014.05.114
  3. Electrooxidation of Zolpidem and its Voltammetric Quantification in Standard and Pharmaceutical Formulation using Pencil Graphite Electrode vol.7, pp.1, 2016, https://doi.org/10.5229/JECST.2016.7.1.68
  4. Sensitivity Control of Label-free DNA Hybridization Detection Based on Poly(thionine)-Modified Glassy Carbon and Gold Electrodes vol.38, pp.1, 2017, https://doi.org/10.1002/bkcs.11037
  5. Label-Free Detection of DNA Hybridization by Using Charge Perturbation on Poly(thionine)-Modified Glassy Carbon and Gold Electrodes vol.162, pp.7, 2015, https://doi.org/10.1149/2.0291507jes
  6. Simultaneous and Interference-Free Detection of Hydroquinone and Catechol on Poly (Evans Blue)-Modified Glassy Carbon Electrode vol.163, pp.10, 2016, https://doi.org/10.1149/2.0901610jes
  7. High Performance Electrocatalyst Based on MIL-101(Cr)/Reduced Graphene Oxide Composite: Facile Synthesis and Electrochemical Detections vol.5, pp.19, 2018, https://doi.org/10.1002/celc.201800588
  8. Detection of Phosphatidylcholine Content in Crude Oil with Bio-Enzyme Screen-Printed Electrode pp.1936-976X, 2019, https://doi.org/10.1007/s12161-018-1354-3
  9. Sensitive Voltammetric Detection of Metronidazole Based on Three-Dimensional Graphene-Like Carbon Architecture/Polythionine Modified Glassy Carbon Electrode vol.165, pp.11, 2018, https://doi.org/10.1149/2.1311811jes